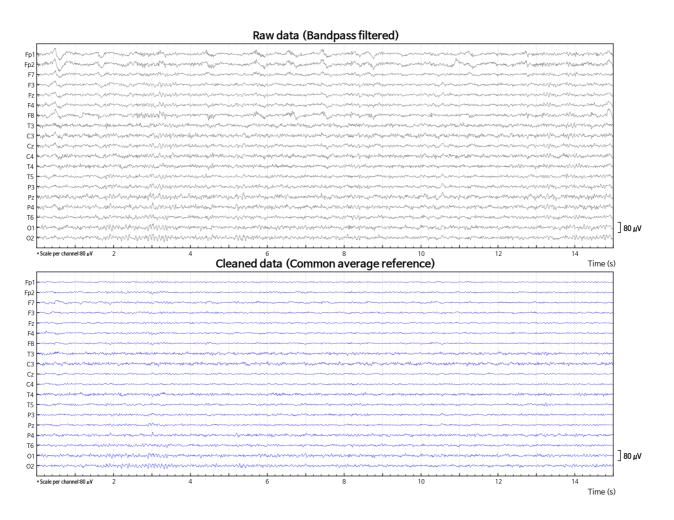

-II Results

Advanced EEG Analysis Platform: cloud-based, Al-driven, norm-matched, sex/age-specific ClientNo. JohnDoe Sex. Male Handedness. Right-handed

CONTENTS	
l .Personal Data	
II .EEG	
1. Raw Data	
2. ICA components	
2-1 Component1	
2-2 Component2	
2-3 Component3	
2-4 Component4	
2-5 Component5	
2-6 Component6	
2-7 Component7	
2-8 Component8	
2-9 Component9	
2-10 Component10	
2-11 Component11	
2-12 Component12	
2-13 Component13	
2-14 Component14	
2-15 Component15	
2-16 Component16	
2-17 Component17	
2-18 Component18	
2-19 Component19	
3. Band power – Topomap	
3-1 Band	
3-2 Absolute	
3-3 Relative	
4. Power spectrum	
4-1 Absolute (μV²/Hz)	
4-2 Absolute (dB/Hz)	
4-3 Relative	
5. Occipital alpha peak	
6. Power ratio	
7. Source ROI power & connectivity	
7-1-ALL-Absolute	
7-2-ALL-Relative	
7-3-DMN-Absolute	
7-4-DMN-Relative	
III. Reference	

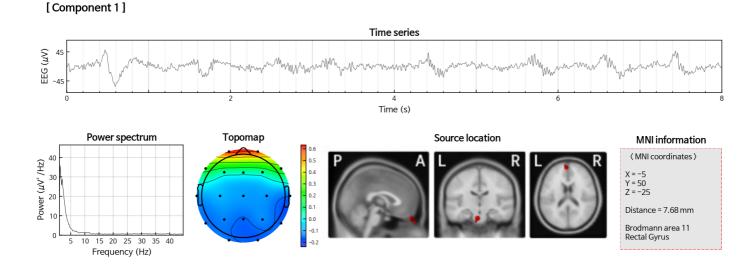

ClientNo.JohnDoe

I . Personal Data								
Norm DB Analysis No	Subject No.	Sex	Date of Birth	EEG acquisition date (age)	Date of Analysis	EC/EO	Handedness	Disease code
22452	JohnDoe	Male	1997-11-05	2022-11-22 (25.0years)	2022-11-22	Eyes Closed	Right-handed	AD0

II . EEG

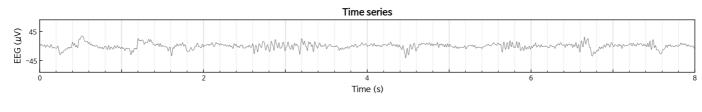
1. Raw Data

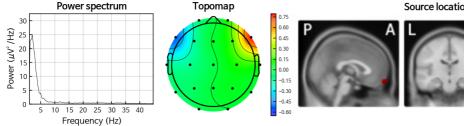
EEG data is a record of the oscillations of electrical brain potentials recorded from electrodes on the human scalp (T100)(T101) (T005). The raw data in the figure below have been cleaned by the application of high-pass and low-pass filers. This markedly reduces distortions (artifacts) from common physiological sources such as face or eye muscle movements, as well as extrinsic non-physiological sources such as electrical devices, power lines, poor electrode contact.


ClientNo.JohnDoe

2. ICA components

Independent component analysis (ICA) is a statistical method to separate independent sources from superimposed signals. It is the most common method that has been used in EEG data decomposition, and can be used to identify and remove the artifacts from raw EEG data. Features including time series, power spectrum density (PSD), component scalp map (Topomap), dipole source location (Source location) extracted from ICA are shown for each component.


Artifact Component No. 1, 2, 4, 7, 13, 16

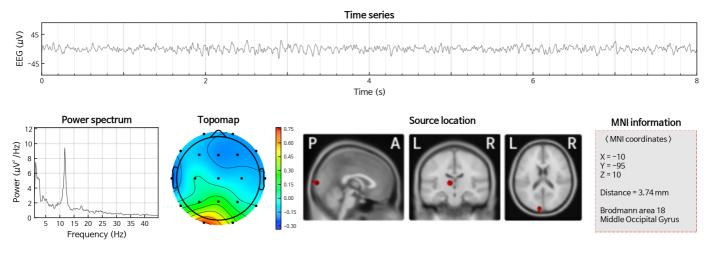

2-1 Component1

2-2 Component2

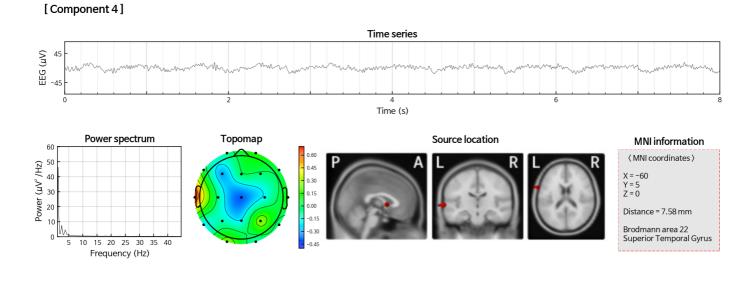
[Component 2]

Source location

MNI information

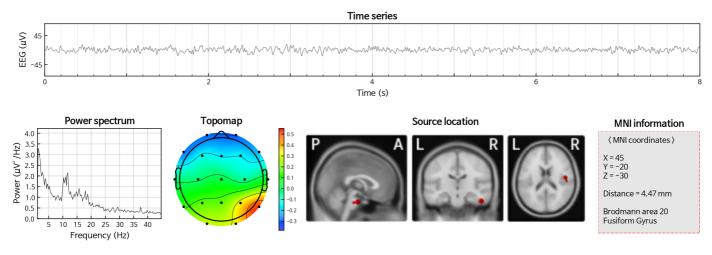


Distance = 7.64 mm

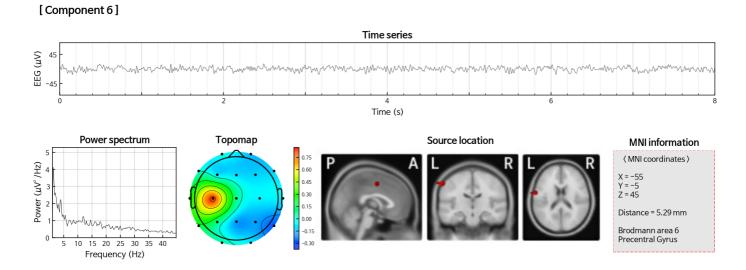

Brodmann area 11 Middle Frontal Gyrus

2-3 Component3

[Component 3]

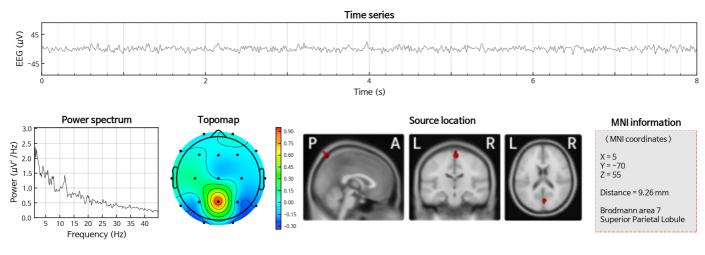


2-4 Component4

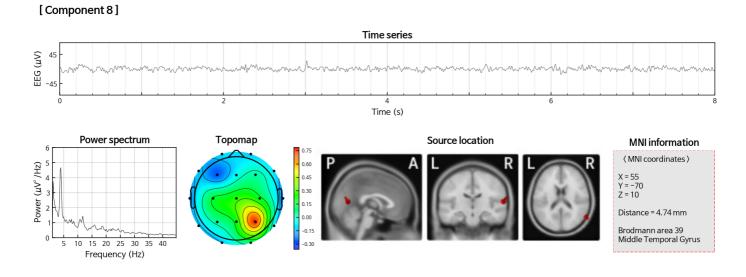


2-5 Component5

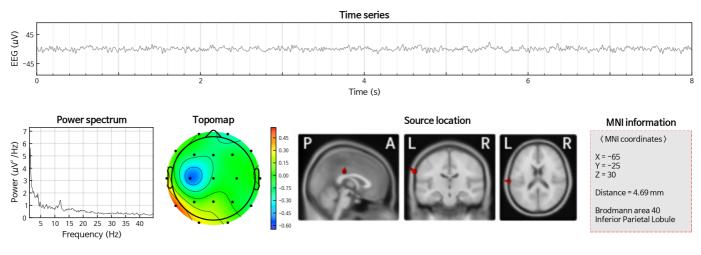
[Component 5]



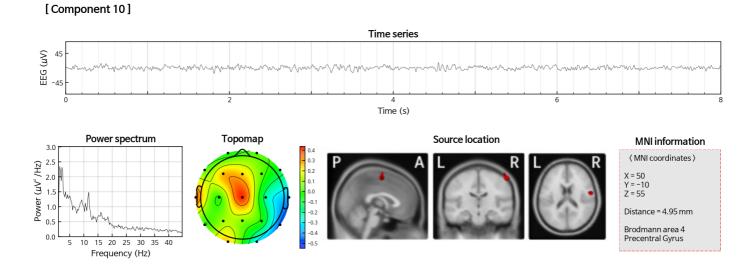
2-6 Component6



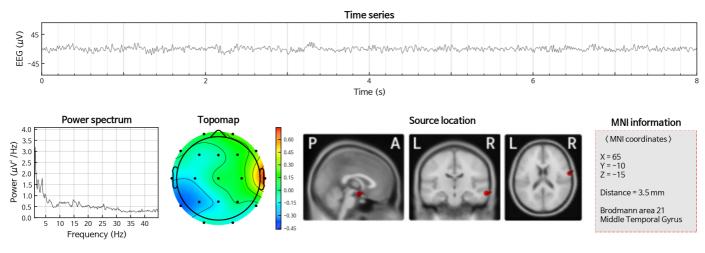
2-7 Component7



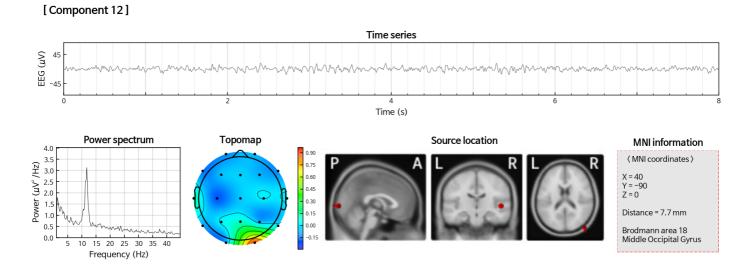
2-8 Component8



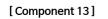
2-9 Component9

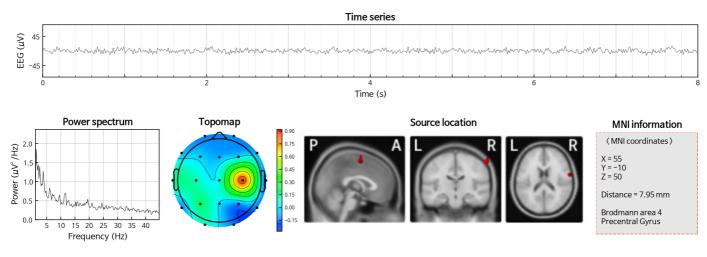


2-10 Component10

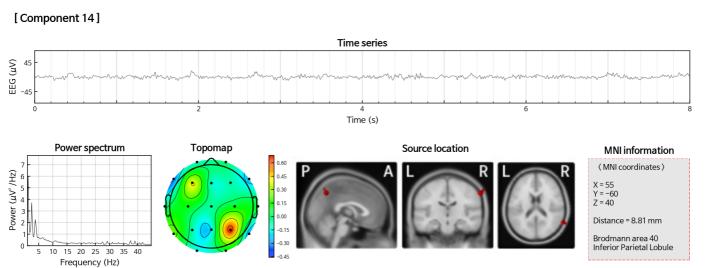


2-11 Component11

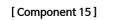


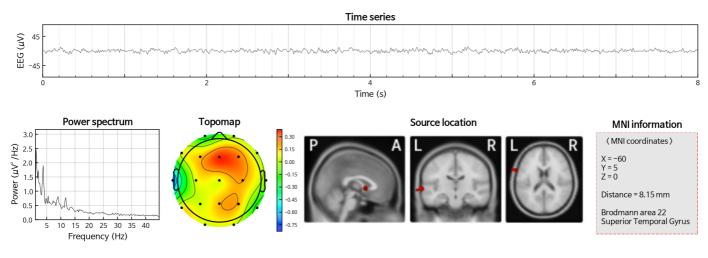


2-12 Component12

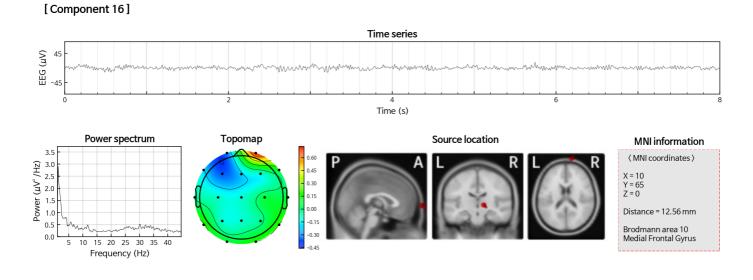


2-13 Component13

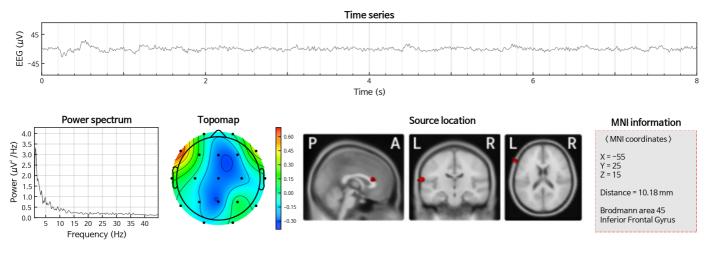




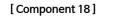
2-14 Component14

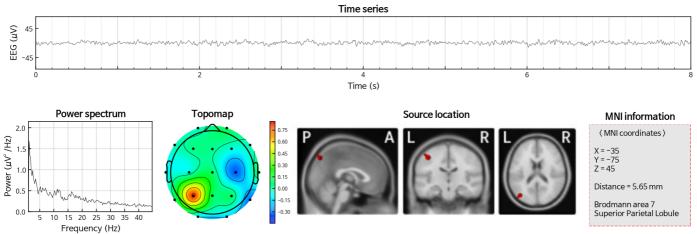


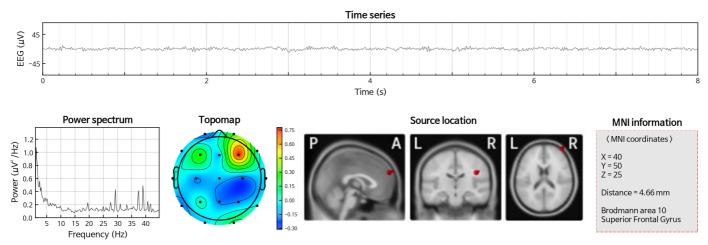
2-15 Component15



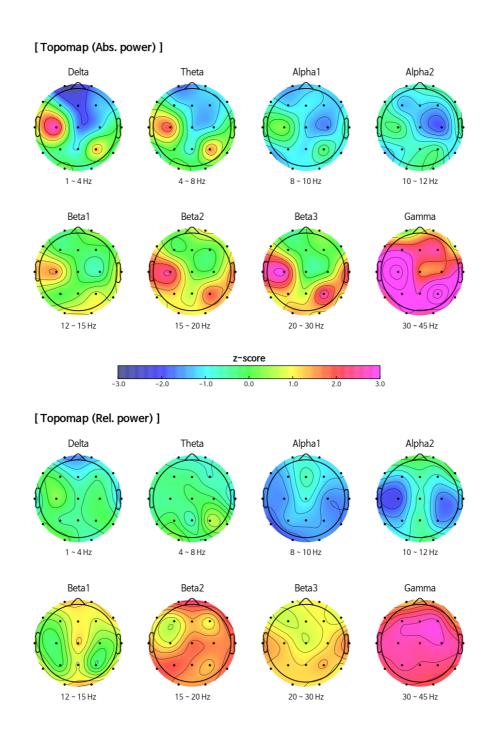
2-16 Component16



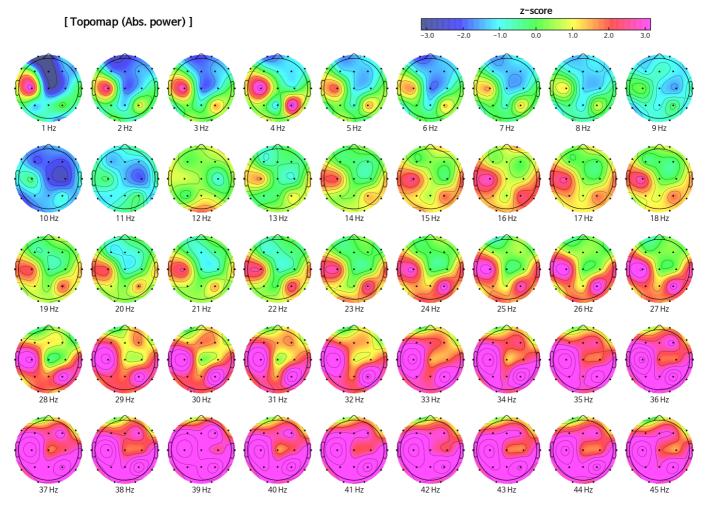

2-17 Component17


2-18 Component18

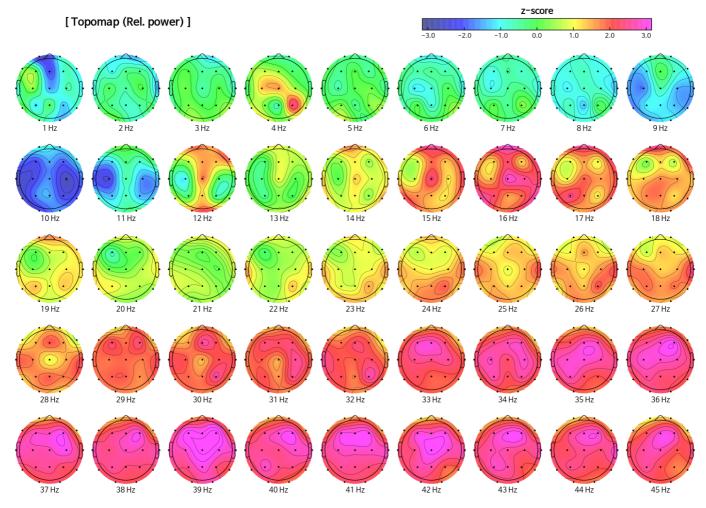
2-19 Component19



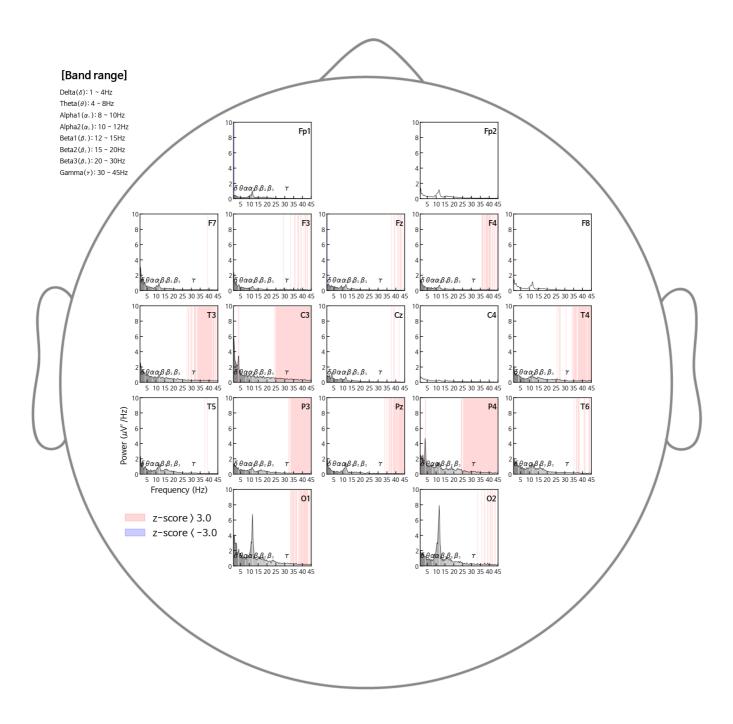
ClientNo.JohnDoe

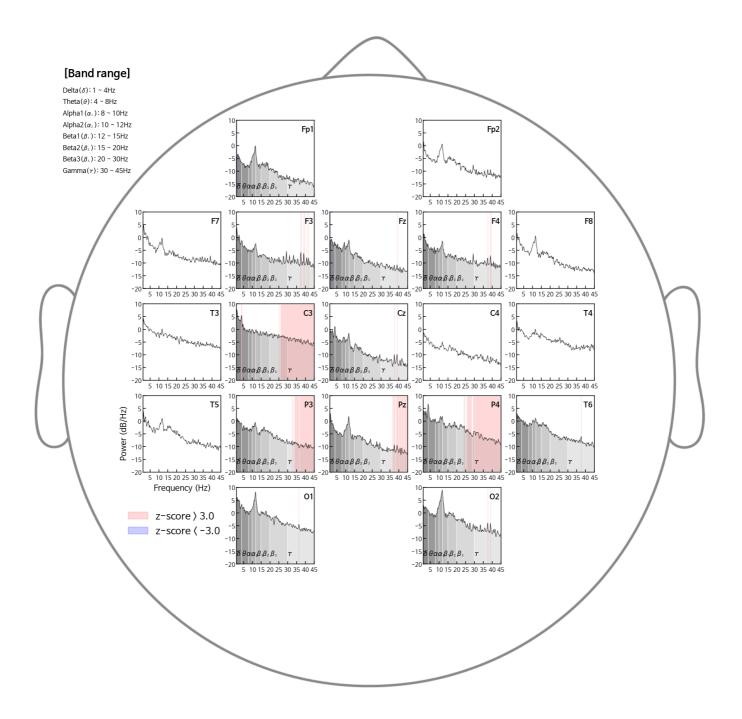

3. Band power - Topomap

In power spectral density(PSD) 2D map, topomaps of absolute and relative power in 1 Hz bins (1 - 45 Hz) as well as each frequency band are presented. Absolute power is the sum of the component powers for each frequency band. Relative power is the absolute power in a specific frequency band divided by the total power. It is advisable to compare relative power with absolute power, since absolute power reflects the individual differences due to variations in brain tissue. This feature provides absolute and relative power based on six brain regions (prefrontal, frontal, left temporal, right temporal, central, parietal, and occipital). The power spectra for each of the 19 channels are shown in the following feature, PSD spectrum (below).

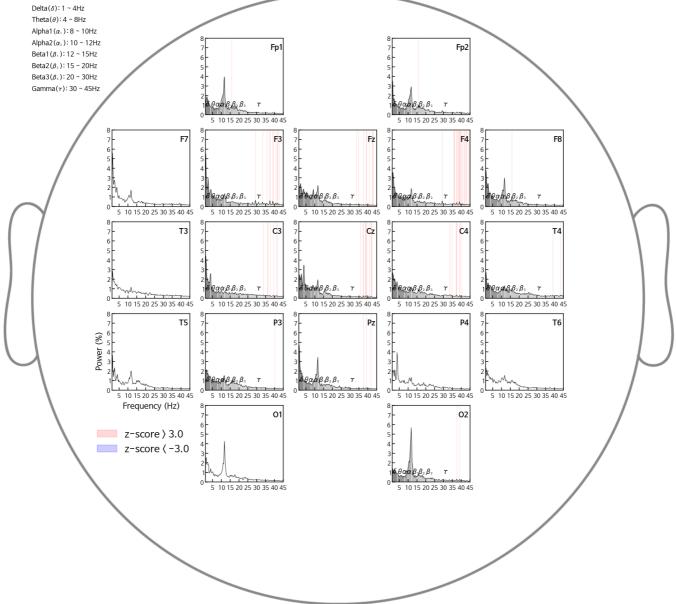

3-1 Band

3-2 Absolute


3-3 Relative


4. Power spectrum

It shows the EEG power measured from 19 channels. It presents the amplitude of power in units of μ V² / Hz or dB/Hz to obtain the frequency characteristics of the alpha band or beta band, respectively. The area shaded in black is the power spectrum of the subject and blue or red area indicates that the z-score of the power spectrum of the subject in specific frequency bands is increased or decreased compared to the age &sex matched normative EEG database.

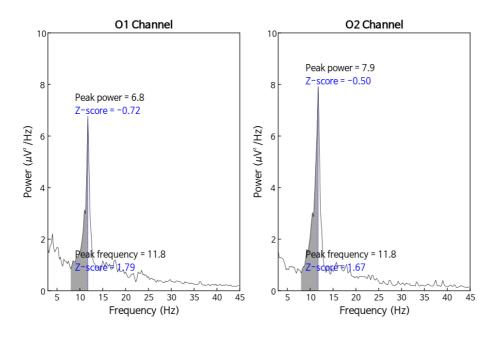

4-1 Absolute (µV²/Hz)

4-2 Absolute (dB/Hz)

[Band range]

4-3 Relative

5. Occipital alpha peak


The occipital alpha frequency is the frequency at which oscillations in the alpha range (8 - 12 Hz) in the occipital regions present their maximum power. This feature shows the percentiles of peak amplitude and frequency compared with the normative EEG database in occipital regions. Alpha frequency may vary markedly to a large extent as a function of age, neurological disease status, memory performance, cognitive processing, and other factors (T179).

Clinical significance

-Resting state alpha rhythms show decreased amplitude in both Alzheimer's disease and mild cognitive disorder, compared with normal elderly subjects (T148)(T149)(T150)(T151)(T152)(T153)(T154)(T155).

-Decreased alpha frequency is known to reflect neurological diseases such as dementia, Alzheimer`s disease, brain injuries, and age-related cognitive performances (T157)(T158)(T159)

-Occipital alpha peak frequency is decreased in autism spectrum disorder (ASD) and furthermore, it is strongly correlated with non-verbal cognition within ASD group (T156).

6. Power ratio

(1)Theta/beta ratio

The theta/beta ratio (TBR) is the ratio of theta (4 - 8 Hz) to beta (13 - 21 Hz) power during the resting conditions. It tends to reflect attention-related functions (T091)(T219).

Clinical significance

-Increased TBR is associated with increased reward responsiveness, risk taking and impulsiveness and it tends to reflect attentional control functioning and behavioral inhibition process (T180).

-The majority of children with ADHD is characterized by increased theta activity and decreased beta activity coupled, and thus a higher TBR (T011).

(2)Theta/alpha ratio

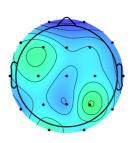
The theta/alpha ratio (TAR) is the ratio of theta (4 - 8 Hz) to alpha (8 - 12 Hz) relative power during the resting conditions and reflects cognitive ability, especially learning and memory-related functions.

Clinical significance

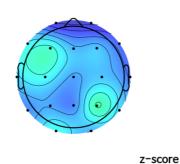
-Increased TAR is associated with decreased cognitive ability (T207).

-The majority of older adults with amnestic mild cognitive impairment (aMCI) and probable Alzheimer`s disease (AD) is characterized by increased theta activity and decreased alpha activity coupled (T200)(T201)(T202).

(3)Delta/alpha ratio


The delta/alpha ratio (DAR) is the ratio of delta (1 - 4 Hz) to alpha (8 - 12 Hz) relative power during the resting conditions and associated with cognitive deficit and functional outcome after stroke.

Clinical significance

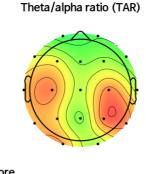

-Increased DAR is associated with cognitive impairment for post stroke in frontal lobe (T204).

-The majority of patients with stroke is characterized by increased delta activity and decreased alpha activity coupled (T204)(T205)(T206).

Unit: a.u.

Theta/beta ratio (TBR)

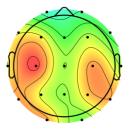
-2.00


-1.00

0.00

1.00

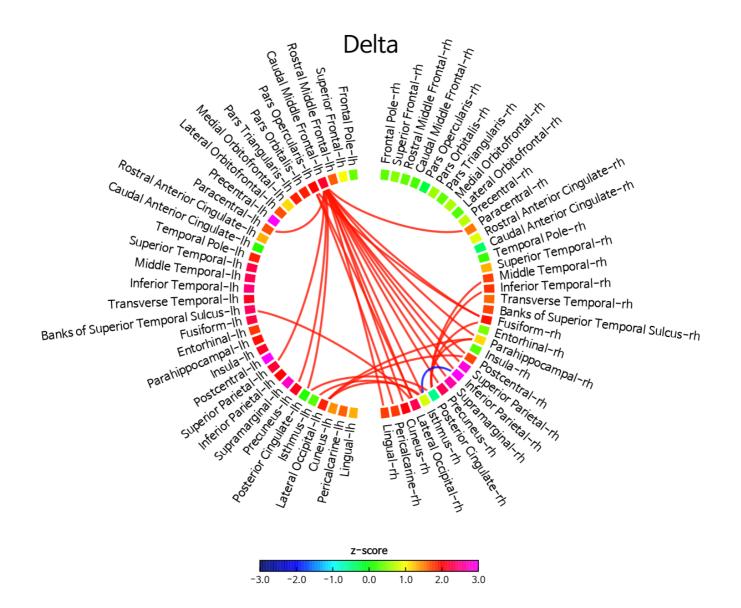
-3.00


Theta/beta2 ratio (TBR2)

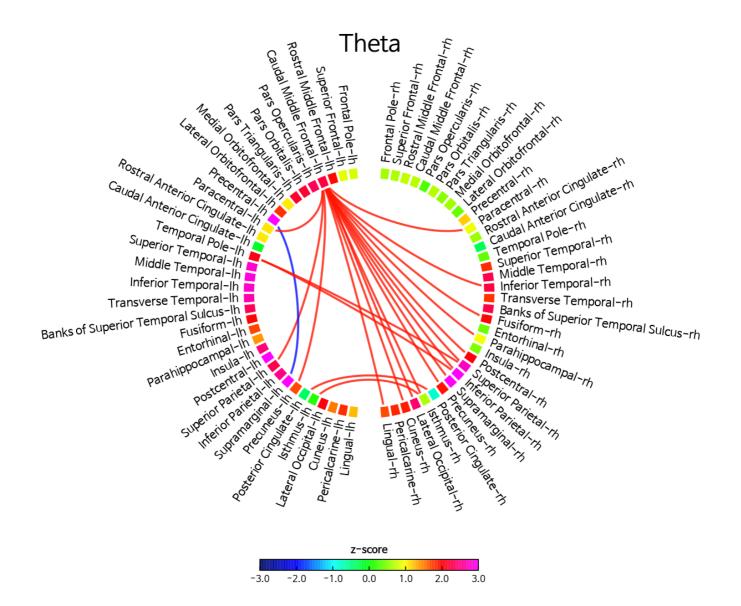
2.00

3.00

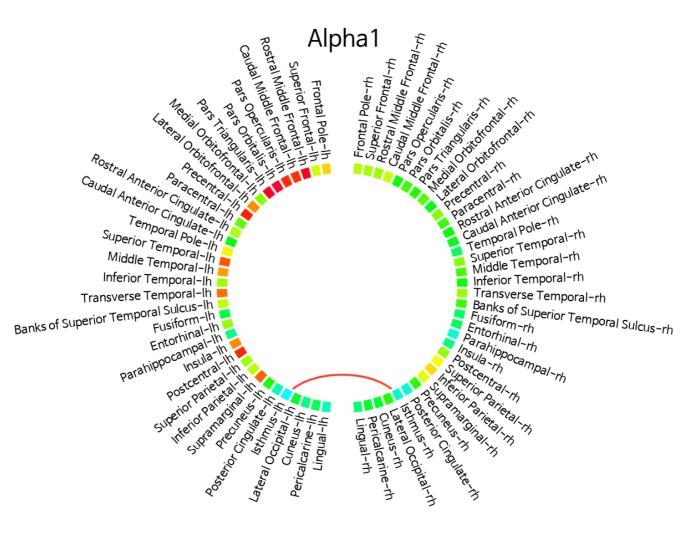
Delta/alpha ratio (DAR)



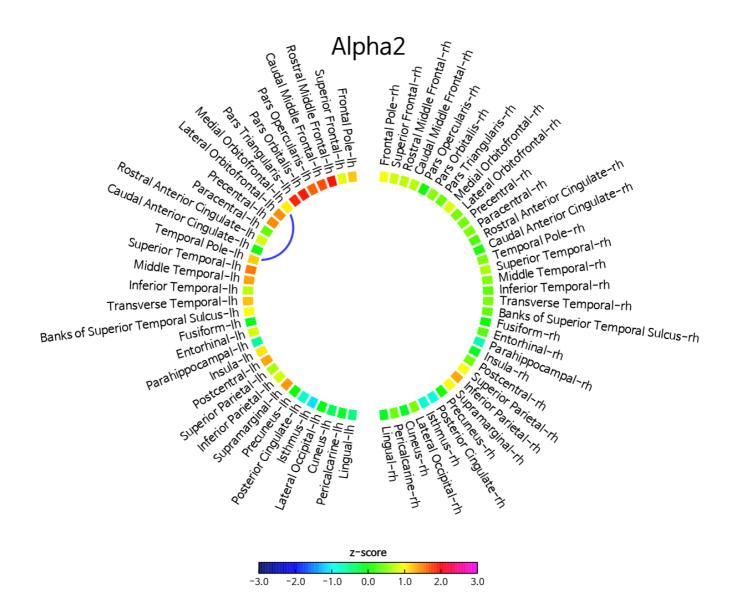
7. Source ROI power (sLORETA) &connectivity (iCoh) 7-1-ALL


Source power derives from the EEG channel data using sLORETA (T218).

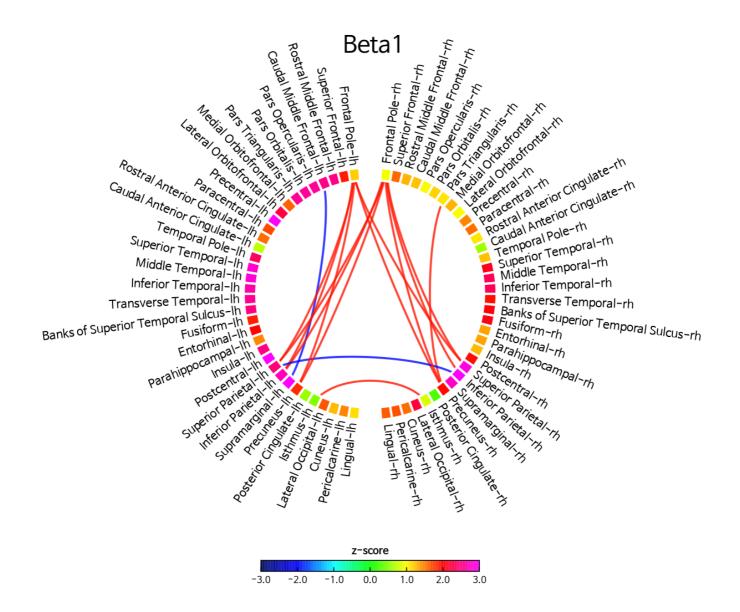
The line represents the connectivity (iCoh) of ROIs. Imaginary coherence (iCoh) means the spectral coherence that ignores volume conduction (only using imaginary part).


7-1-1-Delta(Absolute)

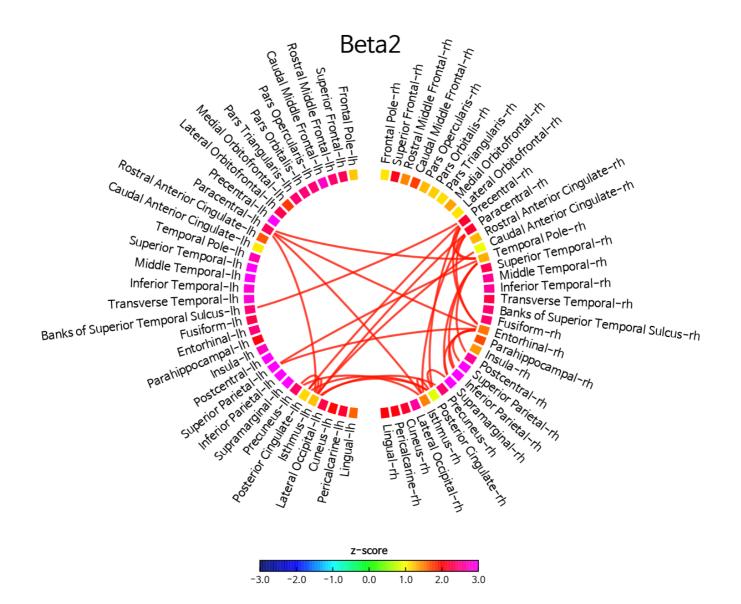
7-1-2-Theta(Absolute)

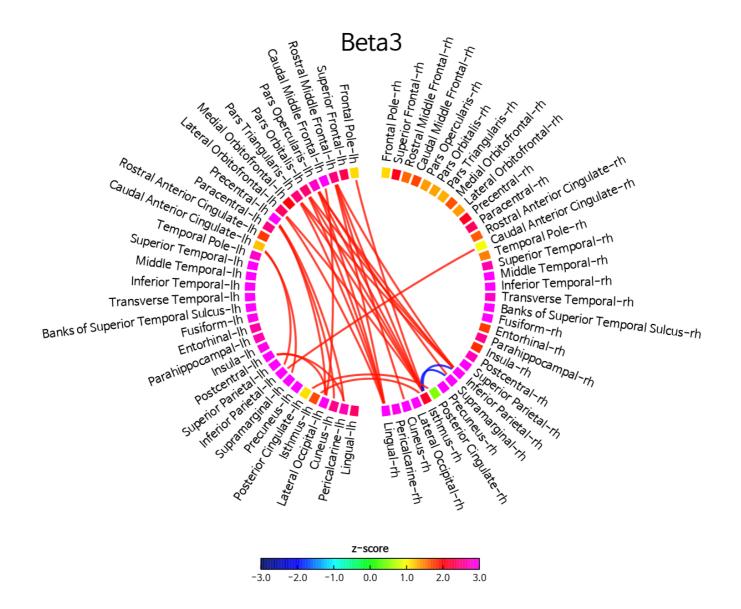


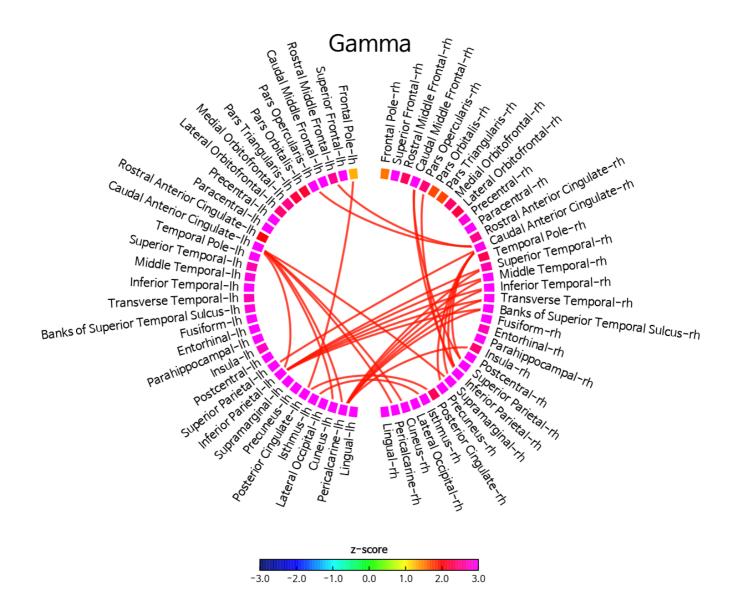
7-1-3-Alpha1(Absolute)



z-score						
-3.0	-2.0	-1.0	0.0	1.0	2.0	3.0

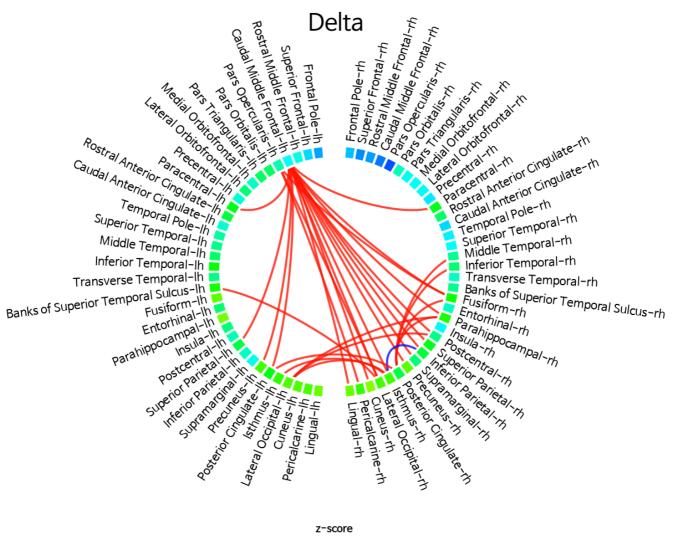

7-1-4-Alpha2(Absolute)


7-1-5-Beta1(Absolute)


7-1-6-Beta2(Absolute)

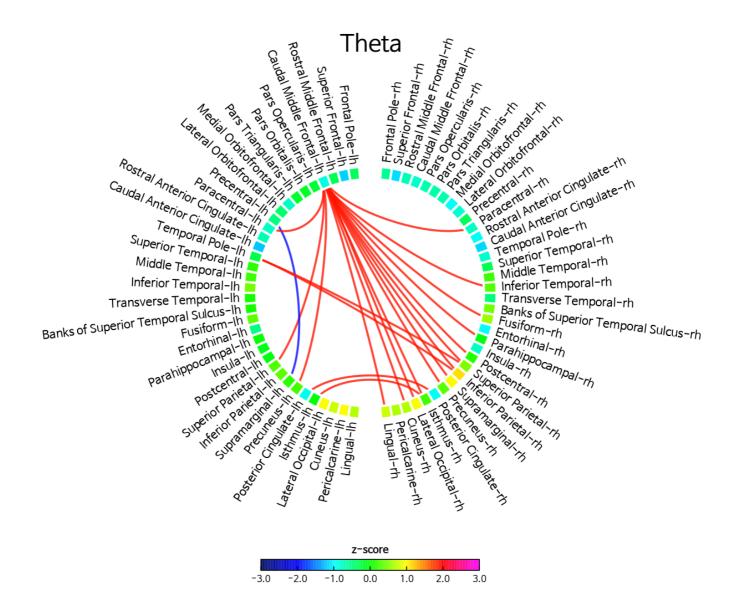
7-1-7-Beta3(Absolute)

7-1-8-Gamma(Absolute)

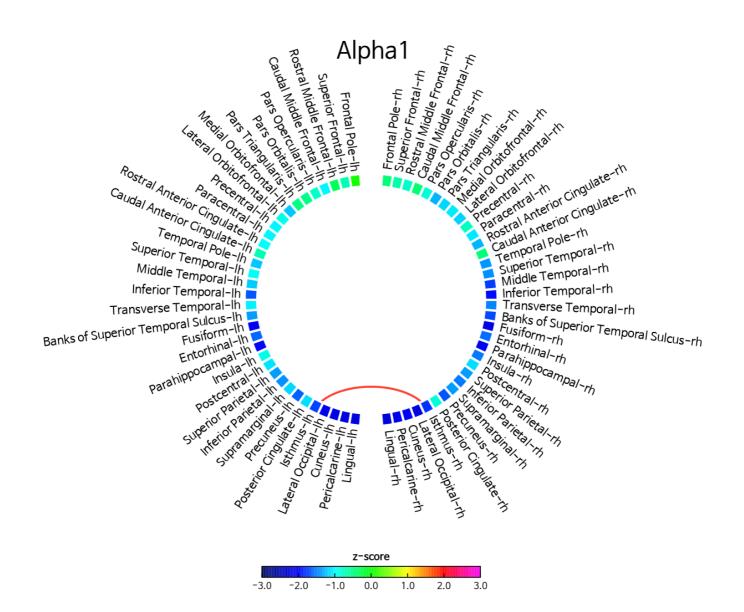


7-2-ALL

Source power derives from the EEG channel data using sLORETA (T218).

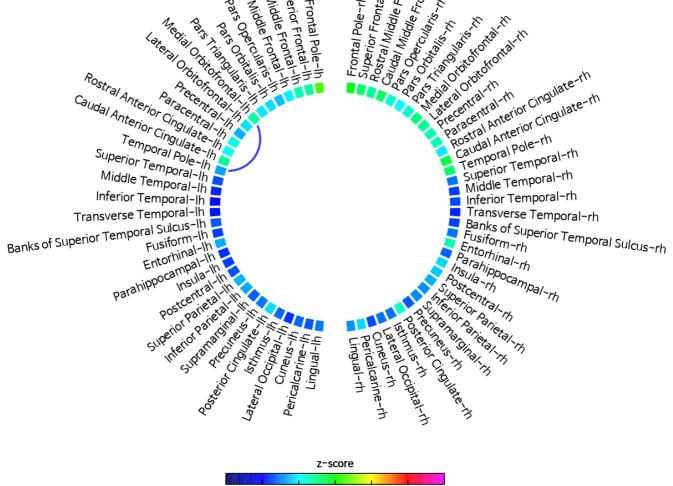

The line represents the connectivity (iCoh) of ROIs. Imaginary coherence (iCoh) means the spectral coherence that ignores volume conduction (only using imaginary part).

7-2-1-Delta(Relative)

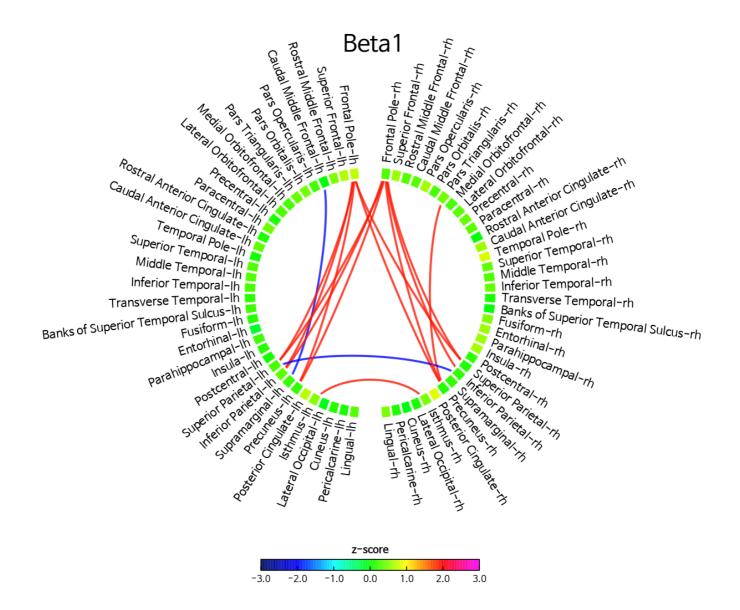


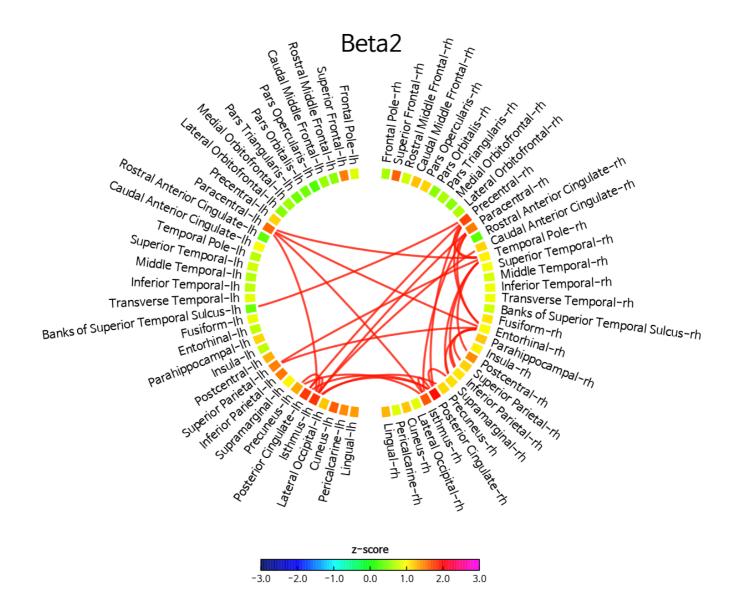
	I.					
-3.0	-2.0	-1.0	0.0	1.0	2.0	3.0

7-2-2-Theta(Relative)

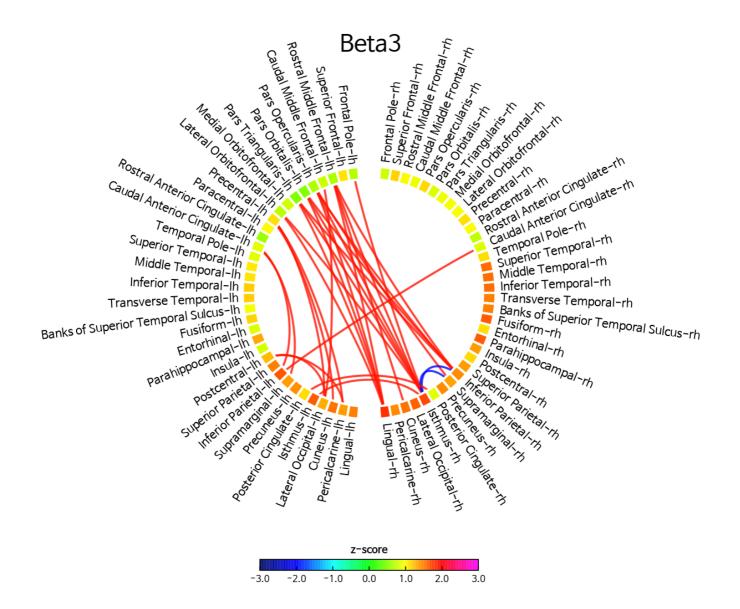


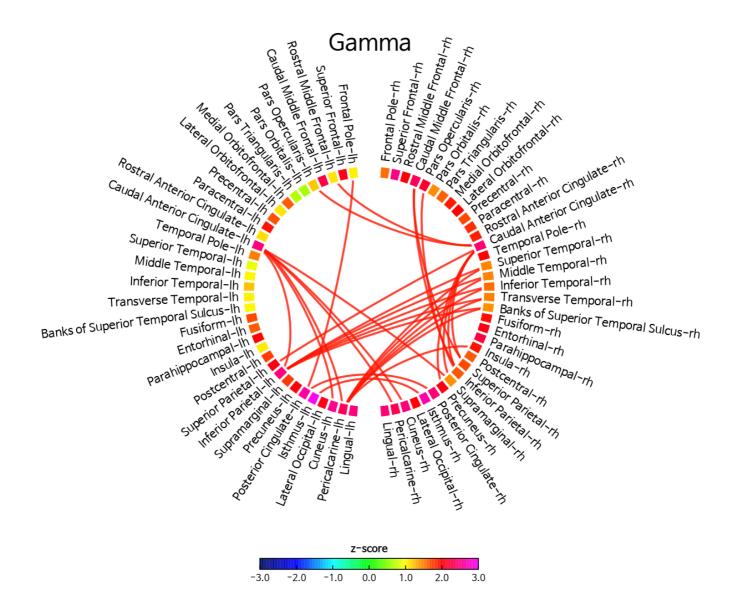
7-2-3-Alpha1(Relative)


7-2-4-Alpha2(Relative)



-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

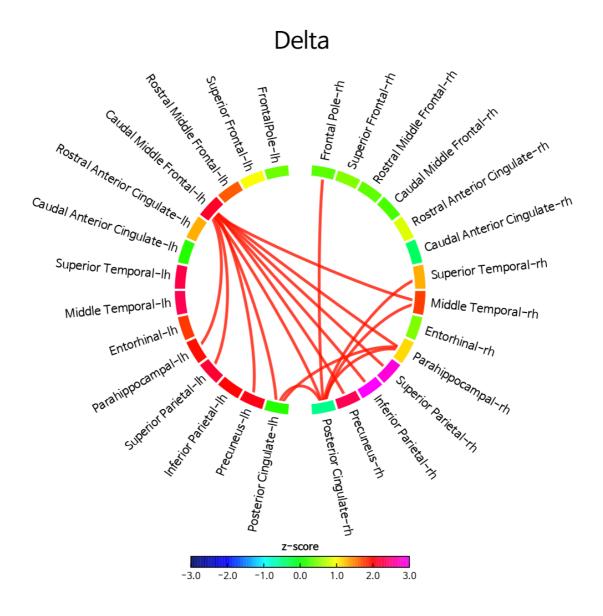

7-2-5-Beta1(Relative)


7-2-6-Beta2(Relative)

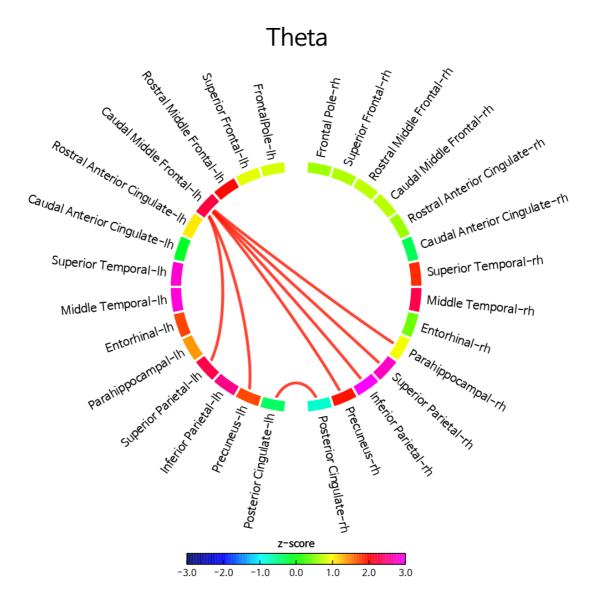
7-2-7-Beta3(Relative)

7-2-8-Gamma(Relative)

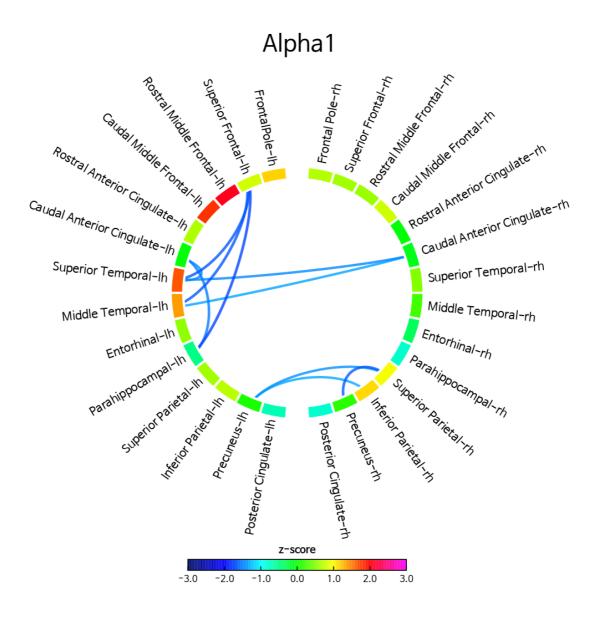
7-3-DMN

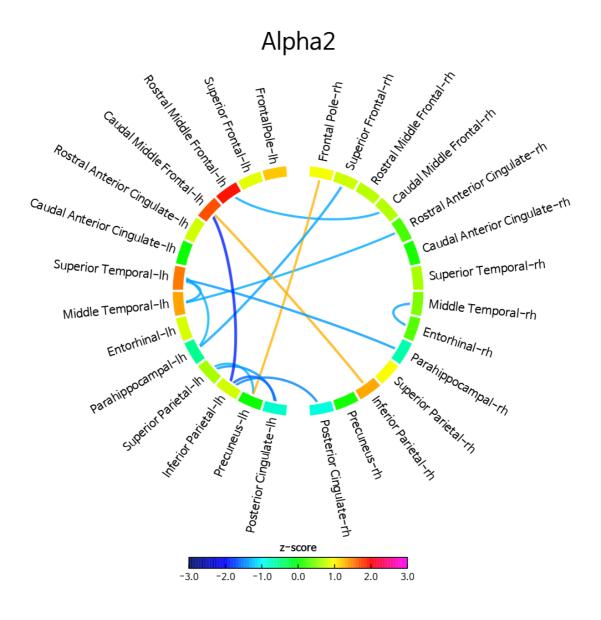

(1)Default mode network

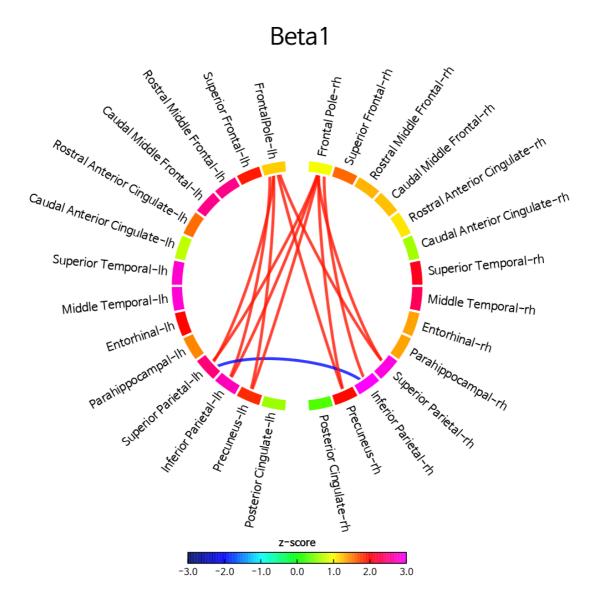
The default mode network (DMN) is a network of brain regions that are relatively active in awake subjects in a resting state. It tends to deactivate during task performance and reactivate during passive rest.

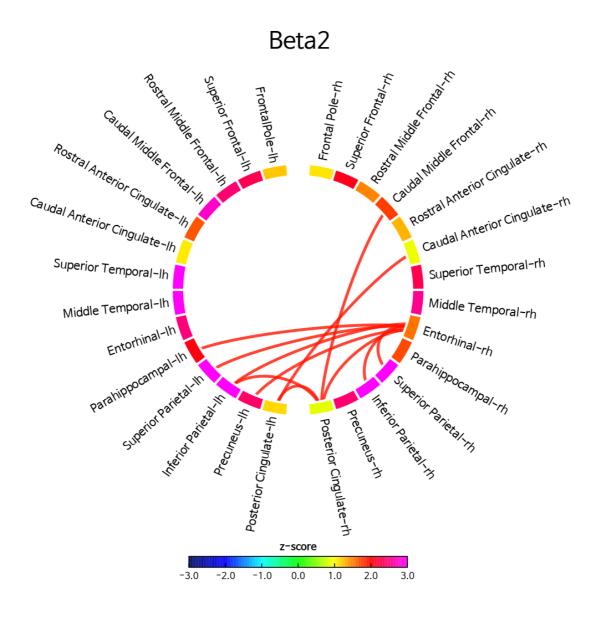

Clinical significance

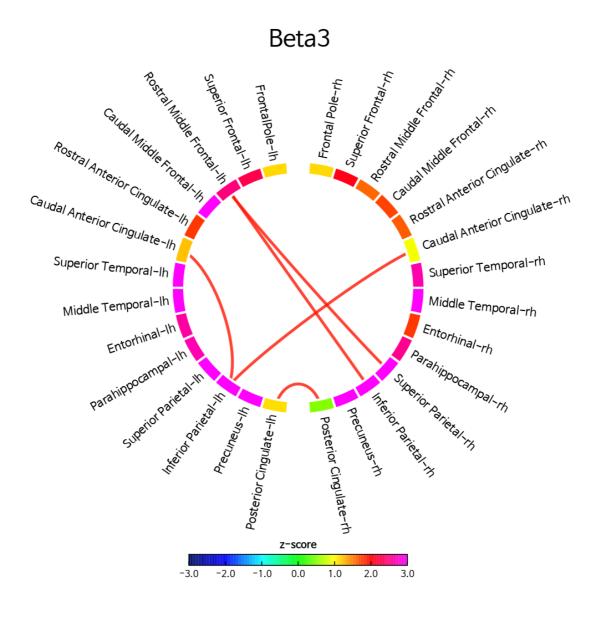
Changes in functional connectivity of the DMN implicate several neurological and neuropsychiatric disorders such as Alzheimer`s disease, Parkinson`s disease (PD), epilepsy (especially temporal lobe epilepsy), ADHD, and mood disorders. More information on the clinical significance of the DMN can be found in the appendix.

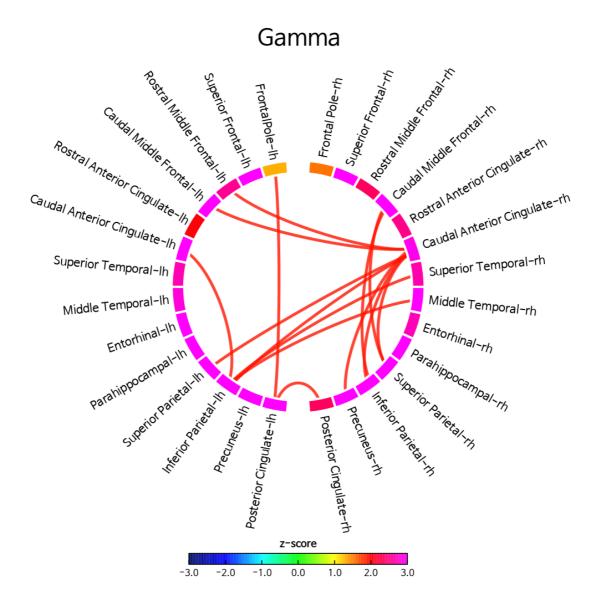

7-3-1-Delta(Absolute)


7-3-2-Theta(Absolute)


7-3-3-Alpha1(Absolute)


7-3-4-Alpha2(Absolute)

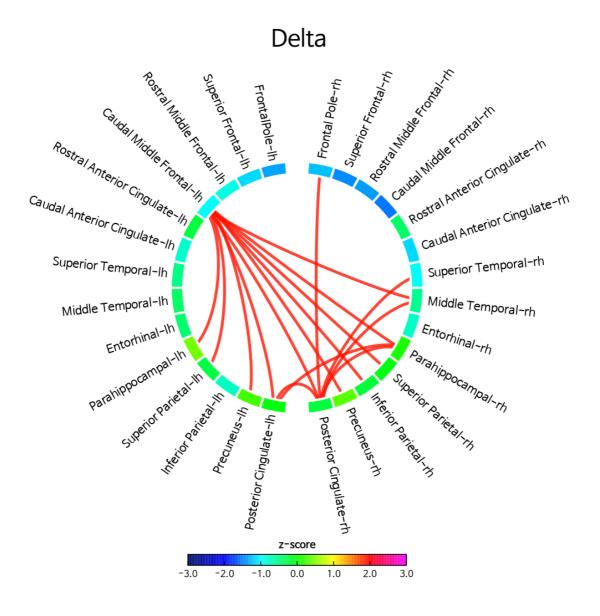

7-3-5-Beta1(Absolute)


7-3-6-Beta2(Absolute)

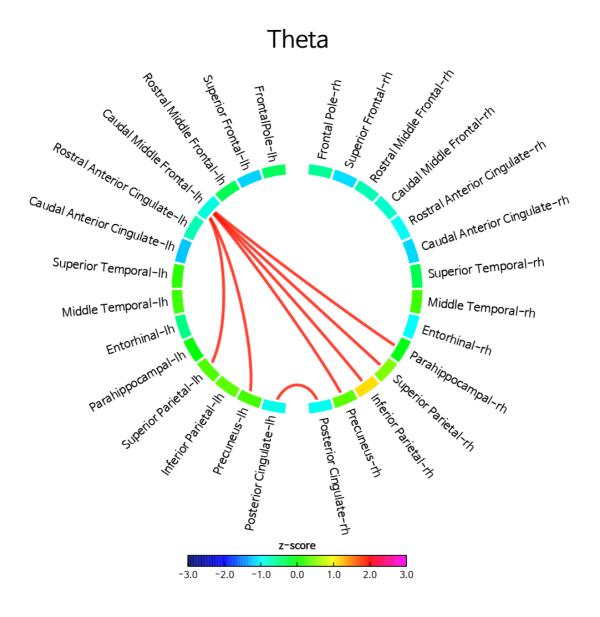
7-3-7-Beta3(Absolute)

7-3-8-Gamma(Absolute)

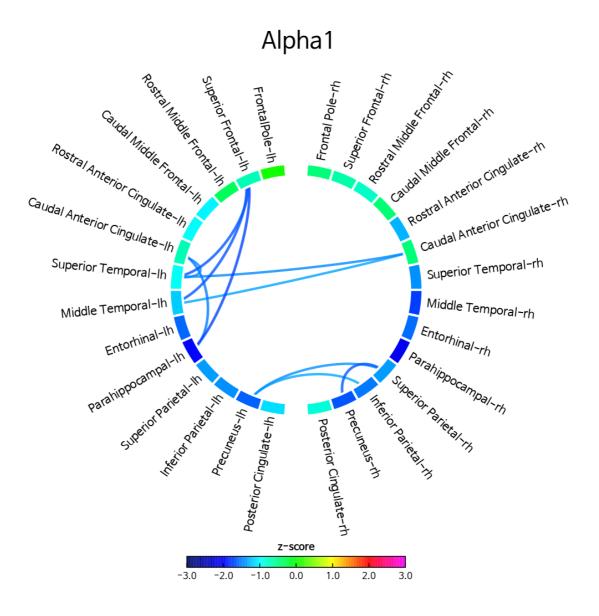
7-4-DMN

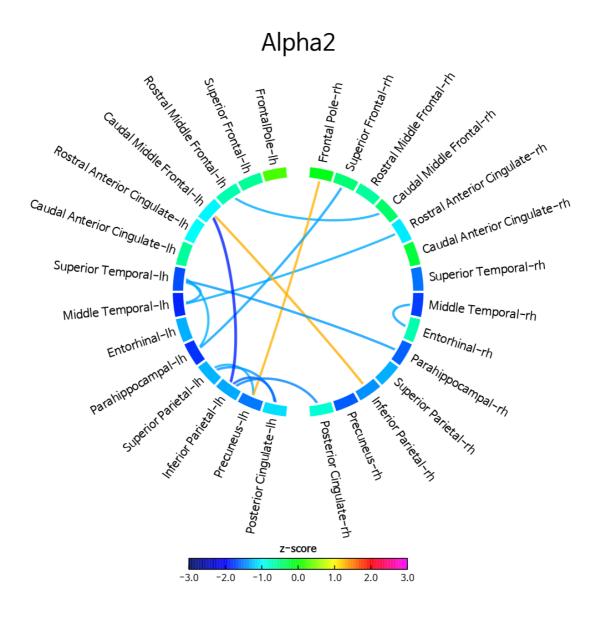

(1)Default mode network

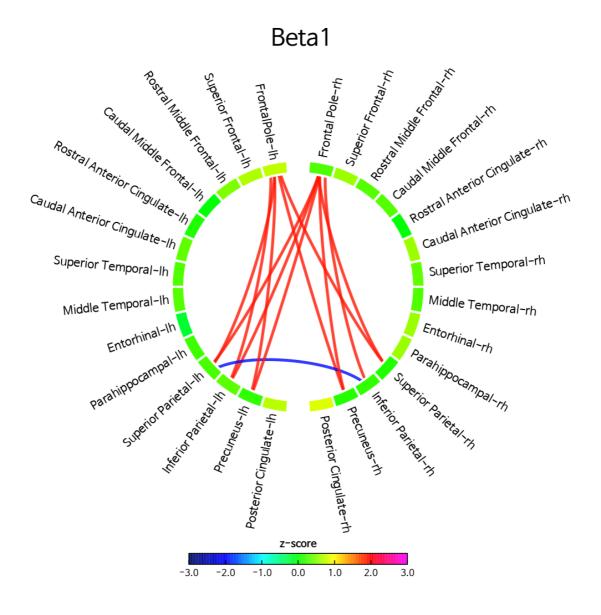
The default mode network (DMN) is a network of brain regions that are relatively active in awake subjects in a resting state. It tends to deactivate during task performance and reactivate during passive rest.

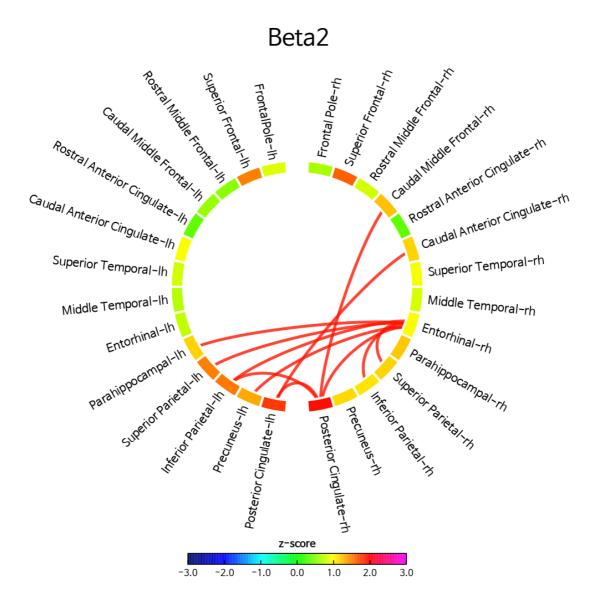

Clinical significance

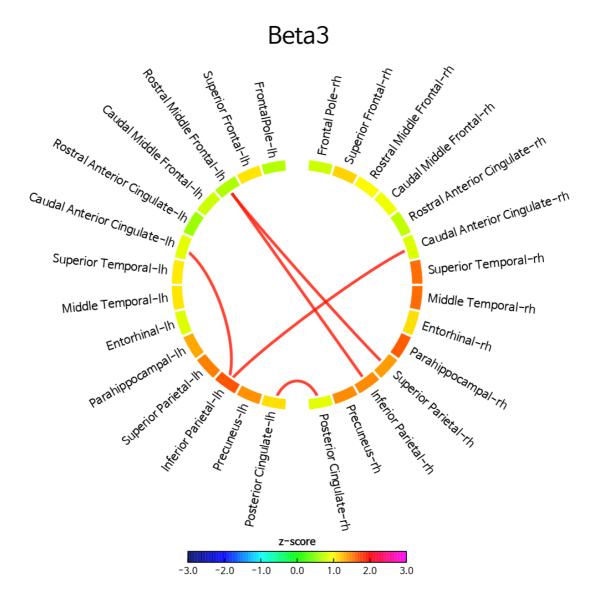
Changes in functional connectivity of the DMN implicate several neurological and neuropsychiatric disorders such as Alzheimer`s disease, Parkinson`s disease (PD), epilepsy (especially temporal lobe epilepsy), ADHD, and mood disorders. More information on the clinical significance of the DMN can be found in the appendix.

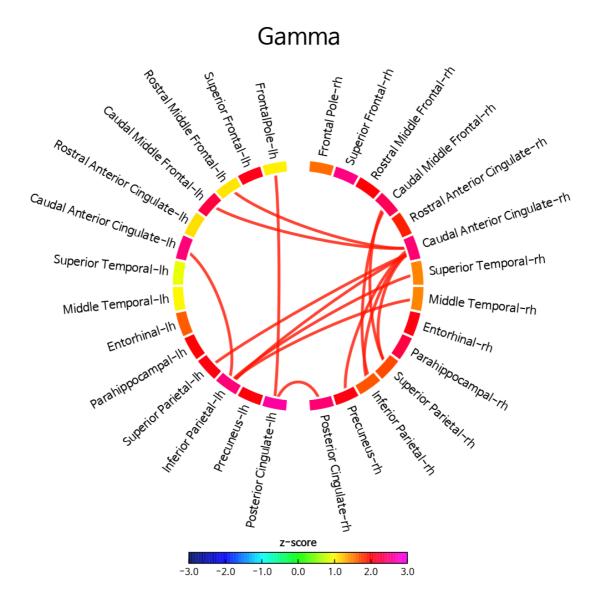

7-4-1-Delta(Relative)


7-4-2-Theta(Relative)


7-4-3-Alpha1(Relative)


7-4-4-Alpha2(Relative)


7-4-5-Beta1(Relative)


7-4-6-Beta2(Relative)

7-4-7-Beta3(Relative)

7-4-8-Gamma(Relative)

III. Reference

REFERENCE_NO	CITATION
T163	Squire LR. Encyclopedia of neuroscience. Amsterdam: Academic Press; 2009.
T162	Ramachandran VS. Encyclopedia of human brain. San Diego: Academic Press; 2002.
T029	Kropotov JD. Quantitative EEG, event-related potentials and neurotherapy. Amsterdam: Academic Press; 2009.
T092	Rajeswaran J. Neuropsychological rehabilitation: principles and applications. London: Elsevier; 2013.
T161	Conn PM. Conn's translational neuroscience. London: Academic press; 2013.
T101	Nunez P, and Srinivasan R. Electric fields of the brain: the neurophysics of EEG. New York: Oxford University Press; 2006.
T087	Brodmann K. and Garey L. Brodmann's localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on cytoarchitectonics. New York: Springer Science Business Media; 2010.
T091	Demos JN. Getting started with neurofeedback. New York: W.W. Norton; 2005.
T178	Demos J. N. Getting started with neurofeedback (1th ed.). New York: W.W. Norton; 2005.
T164	Woolsey TA, Hanaway J, Mokhtar HG. The brain atlas: a visual guide to the human central nervous system. Chichester: John Wiley &Sons, Inc.; 2017.
T100	Niedermeyer E, and Silva FL. Electroencephalography (6th ed.). Philadelphia: Wolters Kluwer Health; 2011.
T135	Swingle PG. Biofeedback for the brain: how neurotherapy effectively treats depression, adhd, autism, and more. New Brunswick: Rutgers University Press; 2010.
T028	Thatcher RW. Handbook of quantitative electroencephalography and EEG biofeedback. St. Petersburg, FL: Anipublishing Co; 2012.
T017	Hales RE, and Yudofsky SC. The American Psychiatric Publishing textbook of neuropsychiatry and behavioral neurosciences (Fifth ed.). Washington, DC: American Psychiatric Publishing; 2008.
T001	Thompson M and Thompson L. The neurofeedback-book: an introduction to basic concepts in applied psychophysiology. Toronto: Association for Applied Psychophysiology and Biofeedback; 2015.
T031	민성길. 최신정신의학. 일조각; 2015.
T098	Kim DW, Kim MS, Kim SP, Park YM, Park JY, Bae KY, et al. Understanding and Application of EEG. HAKJISA Publisher Inc.; 2017.
T005	대한뇌파연구회. 뇌파분석의 기법과 응용. 대한의학서적; 2017.
T179	Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research. Brain Research Reviews 1999; 29, 169–195.
T190	Delacourte A, David JP, Sergeant N, Buee L, Wattez A, ver- mersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology. 1999; 52(6):1158-65
T219	Assessing attention Deficit Hyperactivity Disorder via Quantitative Electroencephalography: An Initial Validation Study(1999)
T041	Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, et al. Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Research 1999; 90:169-79.
T155	Rodriguez G, Copello F, Nobili F, Vitali P, Perego G, and Nobili F. EEG spectral profile to stage Alzheimer's disease. Clinical Neurophysiology 1999a; 110:1831–1837.
T030	Bresnahan, S. M., Anderson, J. W., and Barry, R. J. Age-related changes in quantitative EEG in attention-deficit/hyperactivity disorder. Biological Psychiatry 1999; 46(12), 1690-1697.
T037	Lorig TS. The application of electroencephalographic techniques to the study of human olfaction: a review and tutorial. International Journal of Psychophysiology 2000; 36:91-104.
T132	Sponheim SR, Brett A, Clementz WG, and Morton B. Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia. Biological Psychiatry 2000; 48(11), 1088-097.
T169	Engel, A. K., and Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences 2001; 5, 16–25
T120	Raichle ME, McLeod AM, Snyder AZ, Powers WJ, Gusnard DA, and Shulman GL. A default mode of brain function. Proceedings of

the National Academy of Science 2001; 98, 676-682. Monastra VJ, Lubar JF, and Linden M. The development of a quantitative electroencephalographic scanning process for T070 attention deficit-hyperactivity disorder: Reliability and validity studies. Neuropsychology 2001; 15(1), 136-144. Clarke AR, Barry RJ, Mccarthy R, and Selikowitz M. Age and sex effects in the EEG: differences in two subtypes of attention-T111 deficit/hyperactivity disorder. Clinical Neurophysiology 2001; 112(5), 815-826. Clarke AR, Barry RJ, Mccarthy R, and Selikowitz M. EEG-defined subtypes of children with attention-deficit/hyperactivity T016 disorder. Clinical Neurophysiology 2001; 112(11), 2098-2105. Kowalski JW, Gawel M, Pfeffer A, and Barcikowska M. The Diagnostic Value of EEG in Alzheimer Disease. Journal of Clinical T010 Neurophysiology 2001;18(6), 570-575. Bresnahan SM and Barry RJ. Specificity of quantitative EEG analysis in adults with attention deficit hyperactivity disorder. T110 Psychiatry Research 2002; 112(2), 133-144. Vernon, David, Tobias Egner, Nick Cooper, Theresa Compton, Claire Neilands, Amna Sheri, and John Gruzelier. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology 2003; T019 47(1): 75-85. Barry RJ, Clarke AR, and Johnstone SJ. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative T011 and quantitative electroencephalography. Clinical Neurophysiology 2003;114(2), 171-183. R.D. Pascual-Margui. Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods T218 &Findings in Experimental &Clinical Pharmacology 2002, 24D:5-12 Caplan, J. B., Madsen, J. R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E. L., and Kahana, M. J. Human theta T175 oscillations related to sensorimotor integration and spatial learning. Journal of Neuroscience 23 2003; 4726-4736. M'Harzi M and Jarrard LE. Effects of medial and lateral septal lesions on acquisition of a place and cue radial maze task. T053 Behavioural Brain Research 1992; 49:159-165. Hinrichs, H., and Machleidt, W. Basic emotions reflected in EEG-coherences, International Journal of Psychophysiology 1992; T063 13(3), 225-232. Moretti DV, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreri F, Ferri R, Bartolo Lanuzza, Miniussi C, Nobili F, Rodriguez G, T154 Salinari S, and Rossini PM. Individual analysis of EEG frequency and band power in mild Alzheimer's Disease. Clinical Neurophysiology 2004; 115:299-308. Angelakis E, Lubar JF, Stathopoulou S, and Kounios J. Peak alpha frequency: an electroencephalographic measure of cognitive T117 preparedness. Clinical Neurophysiology 2004; 115(4), 887-897. Clark CR, Veltmeyer MD, Hamilton RJ, Simms E, Paul R, Hermens D, et al. Spontaneous alpha peak frequency predicts working T116 memory performance across the age span. International Journal of Psychophysiology 2004; 53(1), 1-9. T131 Jeong JS. EEG dynamics in patients with Alzheimers disease. Clinical Neurophysiology 2004; 115(7), 1490-1505. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proceedings of the National Academy of Sciences 2004; 101(35), 13050-T102 13055 Antoine Lutz, Lawrence L. Greischar, Nancy B. Rawlings, Matthieu Ricard, and Richard J. Davidson. Long-term meditators self-T217 induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci U S A. 2004; 16; 101(46): 16369-16373. Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, and Jelic V. Decreased EEG synchronization in Alzheimer's disease T153 and mild cognitive impairment. Neurobiology of Aging 2005; 26(2):165-71. Schnitzler A and Gross J. Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience 2005; T045 6:285-296. Leonardo F. Fontenelle, Mauro V. Mendlowicz, Pedro Ribeiro, Roberto A. Piedade, and Marcio Versiani. Low-resolution T078 electromagnetic tomography and treatment response in obsessive-compulsive disorder. International Journal of Neuropsychopharmacology 2006; 9(1):89-94. Monastra VJ, Lynn S, Linden M, Lubar JF, Gruzelier J, and Lavague TJ. Electroencephalographic Biofeedback in the Treatment of T034 Attention-Deficit/Hyperactivity Disorder. Applied Psychophysiology and Biofeedback 2005; 30(2), 95-114. Ribary U. Dynamics of thalamo-cortical network oscillations and human perception. Progress in Brain Research 2005; 150:127-T044 142. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, et al. A shift of visual spatial attention is selectively associated T060 with human EEG alpha activity. European Journal of Neuroscience 2005; 22(11), 2917-2926. T172 Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137 2006, 1087-1106. Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Hirata K, Lanuzza B, Miniussi C, Moretti DV, Nobili F, Rodriguez G, Romani GL, Salinari S, and Rossini PM. Sources of cortical rhythms change as a function of cognitive T148 impairment in pathological aging: A multi-centric study. Clinical Neurophysiology 2006;117(2):252-268 Pilon M, Zadra A, Joncas S, and Montplaisir J. Hypersynchronous Delta Waves and Somnambulism: Brain Topography and Effect T002 of Sleep Deprivation. Sleep 2006; 29(1), 77-84

T020	Egner, Tobias, and M Barry Sterman. Neurofeedback treatment of epilepsy: from basic rationale to practical application. Expert Review of Neurotherapeutics. Future Drugs. 2006; 6(2): 247–257.
T055	Osipova D, Takashima A, Oostenveld R, Fernndez G, Maris E, and Jensen O. Theta and gamma oscillations predict encoding and retrieval of declarative memory. Journal of Neuroscience 2006; 26:7523-7531.
T061	Klimesch W, Sauseng P, and Hanslmayr S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews 2007; 53(1), 63-88.
T046	Uhlhaas PJ and Singer W. Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron 2006; 52(1), 155-168.
T129	Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimers Disease: An Independent Component Analysis. Journal of Neuroscience 2006; 26(40), 10222- 10231.
T166	Cheron, G., Leroy, A., De Saedeleer, C., Bengoetxea, A., Lipshits, M., Cebolla, A., et al. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Research 2006; 1121, 104–116.
T124	Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience &Biobehavioral Reviews 2007; 31(3), 377-395.
T012	Hobbs MJ, Clarke AR, Barry RJ, Mccarthy R, and Selikowitz M. EEG abnormalities in adolescent males with AD/HD. Clinical Neurophysiology 2007;118(2), 363-371.
T027	Byring, R. F., Salmi, T. K., Sainio, K. O., and rn, H. P. EEG in children with spelling disabilities. Electroencephalography and Clinical Neurophysiology 1991; 79(4), 247-255.
T088	Murias M, Webb SJ, Greenson J, and Dawson G. Resting State Cortical Connectivity Reflected in EEG Coherence in Individuals With Autism. Biological Psychiatry 2007;62(3), 270-273.
T177	Sammler, D., Grigutsch, M., Fritz, T., and Koelsch, S. Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 2007; 44, 293–304.
T118	Caviness J, Hentz J, Evidente V, Driver-Dunckley E, Samanta J, Mahant P, et al. Both early and late cognitive dysfunction affects the electroencephalogram in Parkinsons disease. Parkinsonism &Related Disorders 2007; 13(6), 348-354.
T036	Quintana H, Snyder SM, Purnell W, Aponte C, and Sita J. Comparison of a standard psychiatric evaluation to rating scales and EEG in the differential diagnosis of attention-deficit/hyperactivity disorder. Psychiatry Research 2007; 152(2-3), 211-222.
T042	Jensen O, Kaiser J, and Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences 2007; 30:317-324.
T013	Clarke AR, Barry RJ, Mccarthy R, Selikowitz M and Johnstone SJ, et al. Coherence in children with Attention-Deficit/Hyperactivity Disorder and excess beta activity in their EEG. Clinical Neurophysiology 2007; 118(7), 1472-1479.
T149	Babiloni C, Cassetta E, Binetti G, Tombini M, Del Percio C, Ferreri F, Ferri R, Frisoni G, Lanuzza B, Nobili F, Parisi L, Rodriguez G, Frigerio L, Gurz M, Prestia A, Vernieri F, Eusebi F, and Rossini PM. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer's disease. European Journal of Neuroscience 2007; 25(12):3742–57.
T121	Raichle ME and Snyder AZ. A default mode of brain function: A brief history of an evolving idea. Neurolmage 2007; 37(4), 1083- 1090.
T195	Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaf- fari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry 2008; 63(3):332-7.
T157	Bonanni L., Thomas A., Tiraboschi P., Perfetti B., Varanese S., and Onofrj M. EEG comparisons in early Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease with dementia patients with a 2-year follow-up. Brain 2008; 131:690–705.
T184	Dosenbach NU, et al. A dual-networks architecture of top-down control. Trends in Cognitive Sciences 2008; 12:99–105.
T122	Buckner RL, Andrews-Hanna JR, and Schacter DL. The Brains Default Network. Annals of the New York Academy of Sciences 2008; 1124(1), 1-38.
T072	Snyder SM, Quintana H, Sexson SB, Knott P, Haque A, and Reynolds DA. Blinded, multi-center validation of EEG and rating scales in identifying ADHD within a clinical sample. Psychiatry Research 2008; 159(3), 346-358.
T115	Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology 2008;24(4), 424- 430.
T150	Babiloni C, Frisoni GB, Pievani M, Vecchio F, Lizio R, Buttiglione M, Geroldi C, Fracassi C, Eusebi F, Ferri R, and Rossini PM. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 2009a; 44(1):123–35.
T113	Koehler S, Lauer P, Schreppel T, Jacob C, Heine M, Boreatti-Hmmer A, et al. Increased EEG power density in alpha and theta bands in adult ADHD patients. Journal of Neural Transmission 2009; 116(1), 97-104.
T159	Cantero, J.L., Atienza, M., Cruz-Vadell, A., Suarez-Gonzalez, A., and Gil-Neciga, E. Increased synchronization and decreased neural complexity underlie thalamocortical oscillatory dynamics in mild cognitive impairment. NeuroImage 2009, 46, 938–948.
T067	Lubar JF. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self-Regulation 1991;16:201-225.
T056	Robbe D and Buzski G. Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with

	memory impairment. Journal of Neuroscience 2009; 29:12597-12605.
T183	Hedden T, van Dijk KR, Becker JA, Mehta A, Sperling RA, Johnson KA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. Journal of Neuroscience 2009; 29(40):12686-94
T057	Rutishauser U, Ross IB, Mamelak AN, and Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 2010; 464:903-907.
T187	Liao W, et al. Selective aberrant functional connectivity of resting state networks in social anxiety disorder. Neurolmage 2010; 52:1549–1558
T197	Sheline Yi, Price JL, Yan Z, Mintun MA. Resting-state functional MRi in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A. 2010; 107(24):11020-25.
T213	Congedo M, John RE, De Ridder D, Prichep L. Group independent component analysis of resting state EEG in large normative samples. Int J Psychophysiol. 2010;78(2):89-99.
T047	Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews 2010; 90:1195-1268.
T114	Lansbergen MM, Arns M, Dongen-Boomsma MV, Spronk D, and Buitelaar JK. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Progress in Neuro- Psychopharmacology and Biological Psychiatry 2011; 35(1), 47-52.
T198	Lansbergen MM, Arns M, van Dongen-Boomsma M, Spronk D, Buitelaar JK. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):47-52
T194	Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M. Task-related default mode network modula- tion and inhibitory control in ADHD: effects of moti- vation and methylphenidate. Journal of Child Psychology and Psychiatry 2011; 52(7):761-71.
T192	Kwak Y, Peltier S, Bohnen Ni, Muller ML, Dayalu P, Seidler RD. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson's disease. Frontiers in Systems Neuroscience. 2010; 4:143
T112	Clarke AR, Barry RJ, Dupuy FE, Heckel LD, Mccarthy R, Selikowitz M, et al. Behavioural differences between EEG-defined subgroups of children with Attention-Deficit/Hyperactivity Disorder. Clinical Neurophysiology 2011; 122(7), 1333-1341.
T141	Ptak R. The Frontoparietal Attention Network of the Human Brain: Action, Saliency, and a Priority Map of the Environment. The Neuroscientist 2012; 18(5), 502-515.
T074	Abibullaev, B., and An, J. Decision Support Algorithm for Diagnosis of ADHD Using Electroencephalograms. Journal of Medical Systems 2011; 36(4), 2675-2688.
T109	Nazari MA, Wallois F, Aarabi A, and Berquin P. Dynamic changes in quantitative electroencephalogram during continuous performance test in children with attention-deficit/hyperactivity disorder. International Journal of Psychophysiology 2011; 81(3), 230-236.
T201	Fonseca LC, Tedrus GM, Fondello MA, Reis IN, Fontoura DS. EEG theta and alpha reactivity on opening the eyes in the diagnosis of Alzheimer's disease. Clin EEG Neurosci.2011; 42(3):185-189.
T173	Knyazev G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neuroscience &Biobehavioral Reviews 36 2012; 677–695
T144	Ding J, Liao W, Zhang Z, Mantini D, Xu Q, Wu G, et al. Topological Fractionation of Resting-State Networks. PLoS ONE 2011; 6(10), 1-9.
T123	Canuet L, Ishii R, Pascual-Marqui RD, Iwase M, Kurimoto R, Aoki Y, et al. Resting-State EEG Source Localization and Functional Connectivity in Schizophrenia-Like Psychosis of Epilepsy. PLoS ONE 2011; 6(11).
T196	Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W, et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment- naive major depression patients. Biological Psychiatry. 2012; 71(7):611-7.
T130	Whitfield-Gabrieli S, and Ford JM. Default Mode Network Activity and Connectivity in Psychopathology. Annual Review of Clinical Psychology 2012; 8(1), 49-76.
T058	Liebe S, Hoerzer GM, Logothetis NK, and Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 2012; 15(3), 456-462.
T128	Xie T, and He Y. Mapping the Alzheimer's Brain with Connectomics. Frontiers in Psychiatry 2012; 2, 1-14.
T151	Babiloni C, Carducci F, Lizio R, Vecchio F, Baglieri A, Bernardini S, Cavedo E, Bozzao A, Buttinelli C, Esposito F, Giubilei F, Guizzaro A, Marino S, Montella P, Quattrocchi CC, Redolfi A, Soricelli A, Tedeschi G, Ferri R, Rossi-Fedele G, Ursini F, Scrascia F, Vernieri F, Pedersen TJ, Hardemark HG, Rossini PM, and Frisoni GB. Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease. Human Brain Mapping 2013; 34(6):1427-46.
T071	Ogrim, G., Kropotov, J., and Hestad, K. The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: Sensitivity, specificity, and behavioral correlates. Psychiatry Research 2012; 198(3), 482-488.
T052	Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, and McNaughton BL. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Research 1990; 528:12-20.
T125	Calmels C, Foutren M, and Stam C. Beta functional connectivity modulation during the maintenance of motion information in

	working memory: Importance of the familiarity of the visual context. Neuroscience 2012; 212, 49-58.
T180	Massar, S. A. A., Rossi, V., Schutter, D. J. L. G., and Kenemans, J. L. Baseline EEG theta/beta ratio and punishment sensitivity as biomarkers for feedback-related negativity (FRN) and risk-taking. Clinical Neurophysiology 2012; 123, 1958–1965.
T142	Sylvester C, Corbetta M, Raichle M, Rodebaugh T, Schlaggar B, Sheline Y, et al. Functional network dysfunction in anxiety and anxiety disorders. Trends in Neurosciences 2012; 35(9), 527-535.
T069	Loo, S. K., and Makeig, S. Clinical Utility of EEG in Attention-Deficit/Hyperactivity Disorder: A Research Update. Neurotherapeutics 2012; 9(3), 569-587.
T062	Bonnefond M and Jensen O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology 2012; 22:1969-1974.
Т099	Arns M, Conners CK, and Kraemer HC. A Decade of EEG Theta/Beta Ratio Research in ADHD: A Meta-Analysis. Journal of Attention Disorders 2013; 17(5), 374-383.
T119	Fiebelkorn I, Snyder A, Mercier M, Butler J, Molholm S, and Foxe J. Cortical cross-frequency coupling predicts perceptual outcomes. Neurolmage 2013; 69, 126-137.
T127	Fink A, and Benedek M. EEG alpha power and creative ideation. Neuroscience &Biobehavioral Reviews 2014; 44, 111-123.
T171	Wang, Q., and Sourina, O. Real-time mental arithmetic task recognition from EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2013; 21(2), 225-232.
T004	Kryzhanovskii, G. N., Shandra, A. A., Godlevskii, L. S., and Mikhaleva, I. I. Appearance of Parkinsonian Syndrome after Administration of Delta Sleep-inducing Peptide into the Rat Substantia Nigra. Bulletin of Experimental Biology and Medicine 1990; 109(2), 119-121.
T143	Alfonso M, Miquel T, Xavier B, and Blanca A. Resting Parietal Electroencephalogram Asymmetries and Self-Reported Attentional Control. Clinical EEG and Neuroscience 2013; 44(3), 188-192.
T174	Hasselmo, M. E., and Stern, C. E. Theta rhythm and the encoding and retrieval of space and time. Neurolmage 85(Pt 2) 2014; 656–666.
T107	Vossel S, Geng JJ, and Fink GR. Dorsal and Ventral Attention Systems. The Neuroscientist 2014; 20(2), 150-159.
T210	Hsiao FJ, Wang YJ, Yan SH, Chen WT, Lin YY. Altered oscillation and synchronization of default-mode network activity in mild Alzheimer's disease compared to mild cognitive impairment: an electrophysiological study. PLoS One. 2013 Jul 11;8(7):e68792.
T185	Cole MW, et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience 2013; 16:1348–1355
T134	Micanovic C. and Suvankar P. The diagnostic utility of EEG in early-onset dementia: a systematic review of the literature with narrative analysis. Journal of Neural Transmission 2014; 121(1), 59-69.
T170	Plattner, K., Lambert, M. I., Tam, N., Lamberts, R. P., and Baumeister, J. Changes in cortical beta activity related to a biceps brachii movement task while experiencing exercise induced muscle damage. Physiology &Behavior 2014; 123, 1–10.
T203	Schmidt MT, Kanda PA, Basile LF, da Silva Lopes HF, Baratho R, Demario JL, Jorge MS, Nardi AE, Machado S, Ianof JN, Nitrini R, Anghinah R. Index of alpha/theta ratio of the electroencephalogram: a new marker for Alzheimer's disease. Front Aging Neurosci. 2013; 9;5:60. doi: 10.3389/fnagi.2013.00060. eCollection 2013
T008	Brenner, R. P., Ulrich, R. F., Spiker, D. G., Sclabassi, R. J., Reynolds, C. F., Marin, R. S., &Boller, F. (1986). Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalography and Clinical Neurophysiology, 64(6), 483-492.
T160	Harmony T. The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience 7 2013; p.83.
T136	Putman P, Verkuil B, Arias-Garcia E, Pantazi I, and Schie CV. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective, &Behavioral Neuroscience 2014; 14(2), 782-791.
T200	Bian Z, Li Q, Wang L, Lu C, Yin S, Li X. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes. Front Aging Neurosci. 2014; 4;6:11. doi: 10.3389/fnagi.2014.00011. eCollection 2014
T182	Dennis EL and Thompson PM. Functional brain connectivity using fMRi in aging and Alzheimer's disease. Neuropsychology Review 2014; 24(1):49-62.
T126	Abundis-Gutirrez A, Checa P, Castellanos C, and Rueda MR. Electrophysiological correlates of attention networks in childhood and early adulthood. Neuropsychologia 2014; 57, 78-92.
T140	Cole MW, Repov G, and Anticevic A. The Frontoparietal Control System: a central role in mental health. The Neuroscientist 2014; 20(6), 652-664.
T167	Arjona, A., Escudero, M., and Gmez, C. M. Updating of attentional and premotor allocation resources as function of previous trial outcome. Scientific Reports 2014; 4:4526.
T007	John, E. The role of quantitative EEG topographic mapping or 'neurometrics' in the diagnosis of psychiatric and neurological disorders: the pros. Electroencephalography and Clinical Neurophysiology 1989; 73(1), 2-4.
T158	Prinz PN and Vitiello MV. Dominant occipital (alpha) rhythm frequency in early stage Alzheimer's disease and depression.

	Electroencephalogr. Clinical Neurophysiology 1989; 73:427-32.
T205	Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes. Int J Psychophysiol. 2014 ;94(1):19-24
T215	Imperatori C, Farina B, Quintiliani MI, Onofri A, Castelli Gattinara P, Lepore M, Gnoni V, Mazzucchi E, Contardi A, Della Marca G. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study. Biol Psychol. 2014;102:10-7.
T104	Thatcher RW, North DM, and Biver CJ. LORETA EEG phase reset of the default mode network. Frontiers in Human Neuroscience 2014; 8, 1-14.
T208	Kim JS, Shin KS, Jung WH, Kim SN, Kwon JS, Chung CK. Power spectral aspects of the default mode network in schizophrenia: an MEG study. BMC Neurosci. 2014; 5;15:104.
T214	Garcs P, Angel Pineda-Pardo J, Canuet L, Aurtenetxe S, Lpez ME, Marcos A, Yus M, Llanero-Luque M, Del-Pozo F, Sancho M, Maest F. The Default Mode Network is functionally and structurally disrupted in amnestic mild cognitive impairment - a bimodal MEG-DTI study. Neuroimage Clin. 2014; 10;6:214-21.
T193	Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE. Altered intrinsic functional coupling between core neu- rocognitive networks in Parkinson's disease. NeuroImage: Clinical 2015; 7:449-55.
T108	Farrant K. and Uddin LQ. Asymmetric development of dorsal and ventral attention networks in the human brain. Developmental Cognitive Neuroscience 2015; 12, 165-174.
T035	Snyder SM, Rugino TA, Hornig M, and Stein MA. Integration of an EEG biomarker with a clinician's ADHD evaluation. Brain and Behavior 2015; 5(4).
T032	Morillas-Romero A, Tortella-Feliu M, Bornas X, and Putman P. Spontaneous EEG theta/beta ratio and delta-beta coupling in relation to attentional network functioning and self-reported attentional control. Cognitive, Affective, &Behavioral Neuroscience 2015;15(3), 598-606.
T165	Mierau, A., Felsch, M., Hlsdnker, T., Mierau, J., Bullermann, P., Weiß, B., et al. The interrelation between sensorimotor abilities, cognitive performance and individual EEG alpha peak frequency in young children. Clinical Neurophysiology 2016; 127, 270–276.
T176	Ofori, E., Coombes, S. A., and Vaillancourt, D. E. 3D Cortical electrophysiology of ballistic upper limb movement in humans. Neurolmage 2015; 115, 30–41.
T204	Finnigan S, Wong A, Read S. Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin Neurophysiol. 2016; 127(2): 1452-1459
T139	Peeters S, Bronswijk SV, Ven VV, Gronenschild E, Goebel R, Os JV, et al. Cognitive correlates of frontoparietal network connectivity 'at rest' in individuals with differential risk for psychotic disorder. European Neuropsychopharmacology 2015; 25(11), 1922-1932.
T189	Wang, P., Zhou, B., Yao, H., Zhan, Y., Zhang, Z., Cui, Y., et al. Aberrant intra- and inter-network connectivity architectures in Alzheimer's disease and mild cognitive impairment. Scientific Reports 2015; 5, 14824.
T106	Hata M, Kazui H, Tanaka T, Ishii R, Canuet L, Pascual-Marqui RD, et al. Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer's disease – An eLORETA study. Clinical Neurophysiology, 2016; 127(2), 1269- 1278.
T145	Oni-Orisan A, Kaushal M, Li W, Leschke J, Ward BD, Vedantam A, et al. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study. PLoS One 2016; 11(3), 1-13.
T137	Schorr B, Schlee W, Arndt M, and Bender A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome. Journal of Neurology 2016; 263(5), 937-953.
T094	Robbie JC, Clarke AR, Barry RJ, Dupuy FE, Mccarthy R, and Selikowitz M. Coherence in children with AD/HD and excess alpha power in their EEG. Clinical Neurophysiology 2016; 127(5), 2161-2166.
T090	Saunders A, Kirk IJ, and Waldie KE. Hemispheric Coherence in ASD with and without Comorbid ADHD and Anxiety. BioMed Research International 2016; 1-12.
T188	Tessitore, A., Giordano, A., De Micco, R., Caiazzo, G., Russo, A., Cirillo, M., Esposito, F., and Tedeschi, G. Functional connectivity underpinnings of fatigue in "Drug-Naive" patients with Parkinson's disease. Movement Disorders 2016; 31(10), 1497-1505.
T186	Lin, H. Y., Tseng, W. Y., Lai, M. C., Matsuo, K. and Gau, S. S. Altered resting-state frontoparietal control network in children with attention-deficit/hyperactivity disorder. Journal of the International Neuropsychological Society 2015; 21, 271–284, doi: 10.1017/S135561771500020X.
T168	Marzbani, H., Marateb, H. R., and Mansourian, M. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience 2016; 7, 143–158.
T133	Malek N, Baker MR, Mann C, and Greene J. Electroencephalographic markers in dementia. Acta Neurologica Scandinavica 2016; 135(4), 388-93.
T033	Gloss D, Varma JK, Pringsheim T, and Nuwer MR. Practice advisory: The utility of EEG theta/beta power ratio in ADHD diagnosis: Table. Neurology 2016; 87(22), 2375-2379.
T014	Lou, H. C., Henriksen, L., Bruhn, P., Borner, H., and Nielsen, J. B. Striatal Dysfunction in Attention Deficit and Hyperkinetic Disorder. Archives of Neurology 1989, 46(1), 48-52.

T105	Imperatori C, Marca GD, Brunetti R, Carbone GA, Massullo C, Valenti EM, et al. Default Mode Network alterations in alexithymia: an EEG power spectra and connectivity study. Scientific Reports 2016; 6(1), 1-11.
T209	Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, Leow A, Klumpp H. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. Neuroimage Clin. 2016; 12;13:24-32
T103	Cozac VV, Chaturvedi M, Hatz F, Meyer A, Fuhr P, and Gschwandtner U. Increase of EEG Spectral Theta Power Indicates Higher Risk of the Development of Severe Cognitive Decline in Parkinson's Disease after 3 Years. Frontiers in Aging Neuroscience 2016; 8, 1-7.
T147	Adolph D. and Margraf J. The differential relationship between trait anxiety, depression, and resting frontal α-asymmetry. Journal of Neural Transmission 2017; 124(3), 379-386.
T066	Park, J. H., Hong, J. S., Han, D. H., Min, K. J., Lee, Y. S., Kee, B. S., and Kim, S. M. Comparison of QEEG Findings between Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) without Comorbidity and ADHD Comorbid with Internet Gaming Disorder. Journal of Korean Medical Science 2017; 32(3), 514-521.
T138	Berry AS, Sarter M, and Lustig C. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control. Journal of Cognitive Neuroscience 2017; 29(7), 1212-1225.
T211	Koelewijn L, Bompas A, Tales A, Brookes MJ, Muthukumaraswamy SD, Bayer A, Singh KD. Alzheimer's disease disrupts alpha and beta-band resting-state oscillatory network connectivity. Clin Neurophysiol. 2017;128(11):2347-2357
T199	Schutte I, Kenemans JL, Schutter DJLG. Resting-state theta/beta EEG ratio is associated with reward- and punishment-related reversal learning. Cogn Affect Behav Neurosci. 2017; 17(4): 754-763
T216	Han Y, Wang K, Jia J, Wu W. Changes of EEG Spectra and Functional Connectivity during an Object-Location Memory Task in Alzheimer's Disease. Front Behav Neurosci. 2017; 31;11:107.
T146	Park JE, Jung SC, Ryu KH, Oh JY, Kim H S, Choi C, .et al. Differences in dynamic and static functional connectivity between young and elderly healthy adults. Neuroradiology 2017; 59(8), 781-789.
T156	Dickinson, A., DiStefano, C., Senturk, D., and Jeste, S. S. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. European Journal of Neuroscience 2017; 47(6):643-651.
T206	Aminov A, Rogers JM, Johnstone SJ, Middleton S, Wilson PH. Acute single channel EEG predictors of cognitive function after stroke. PLoS One. 2017; 2;12(10):e0185841
T202	Fahimi G, Tabatabaei SM, Fahimi E, Rajebi H. Index of Theta/Alpha Ratio of the Quantitative Electroencephalogram in Alzheimer's Disease: A Case-Control Study. Acta Med Iran. 2017; 55(8):502-506.
T212	Whitton AE, Deccy S, Ironside ML, Kumar P, Beltzer M, Pizzagalli DA. Electroencephalography Source Functional Connectivity Reveals Abnormal High-Frequency Communication Among Large-Scale Functional Networks in Depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(1):50-58
Т003	Feinberg I., Baker T., Leder R., and March J. Response of Delta (0-3 Hz) EEG and Eye Movement Density to a Night with 100 Minutes of Sleep. Sleep 1988; 11(5), 473-487.
T025	N, K. C. Computed Electroencephalographic Activity Mapping in Schizophrenia. Archives of General Psychiatry 1987; 44(6), 514.
T018	Tansey MA. EEG sensorimotor rhythm biofeedback training: some effects on the neurologic precursors of learning disabilities. International Journal of Psychophysiology 1984;1(2): 163–77.
T048	Berry SD and Thompson RF. Prediction of learning rate from the hippocampal electroencephalogram. Science 1978; 200:1298- 1300.
T049	Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 1978; 201:160-163.
T051	Mitchell SJ, Rawlins JN, Steward O, Olton DS. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. Journal of Neuroscience 1982; 2:292-302.
Т009	Soininen, H., Partanen, V. J., Helkala, E., and Riekkinen, P. J. EEG findings in senile dementia and normal aging. Acta Neurologica Scandinavica 1982; 65(1), 59-70.
T050	Macrides F, Eichenbaum HB, and Forbes WB. Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. Journal of Neuroscience 1982; 2:1705-1717.
T039	Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology 1994; 18:49-65
T152	Dierks T, Ihl R, Frolich L, and Maurer K. Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources. Psychiatry Research 1993; 50(3):51–162
T006	Chabot, R. J., Merkin, H., Wood, L. M., Davenport, T. L., and Serfontein, G. Sensitivity and Specificity of QEEG in Children with Attention Deficit or Specific Developmental Learning Disorders. Clinical EEG and Neuroscience 1996; 27(1), 26-34.
T054	Klimesch W, Doppelmayr M, Russegger H, and Pachinger T. Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 1996; 7:1235-1240.
T207	Jelic V, Shigeta M, Julin P, Almkvist O, Winblad B, Wahlund LO. Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment. Dementia. 1996;7(6):314-23.
T059	Pfurtscheller G, Stanck A Jr, and Neuper C. Event-related synchronization (ERS) in the alpha bandan electrophysiological

	correlate of cortical idling: a review. International Journal of Psychophysiology 1996; 24:39-46.
T015	Tak Youn, and Jun Soo Kwon. Clinical Applications of Quantitative EEG. 수면-정신생리 1995; 2(1), 31-43.
T040	Kim MR, Kim KR, Ha CK, Choi SH, and Lee IK. Comparative Study between Visusal Analysis and Low Resolution Electromagnetic Tomography (LORETA) Method in the Localization of Epileptiform Discharges. Journal of the Korean Neurological Association 2002; 20:164-168.
T097	Hyeonjin Jeon and Seung-Hwan Lee. Electroencephalography of Learning and Memory. Korean Journal of Biological Psychiatry 2016; 23(3), 102-107.
T096	Eun-Kyoung Cho, Byung-Ok Choi, Yong-Jae Kim, Ki-Duck Park, Eung-Su Kim, and Kyoung-Gyu Choi. Quantitative EEG in de novo Parkinson's Disease: Comparison with Normal Controls and Essential Tremor Patients with Nonlinear Analysis. Korean Society for Clinical Neurophysiology 2006; 8(2), 135-145.
T024	Sung Hoon Lee, Hyun Sook Kang, Eun Sun Han, and Ho Young Lee. The Hypofrontalism of Schizophrenics on the Topographic Mapping od EEG. J Korean Neuropsychiatr Assoc 1991; 30(6), 982-989.
T021	Pineda J, Brang D, Hecht E, Edwards L, Carey S, et al. Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Research in Autism Spectrum Disorders 2008; 2(3), 557-581.
T022	Hoagland, H., Cameron, D. E., &Rubin, M. A. The Electrencephalogram Of Schizophrenics During Insulin Treatments. American Journal of Psychiatry 1937; 94(1), 183-208.
T023	Small, J. G. EEG in Schizophrenia and affective disorder. EEG and Evoked Potentials in Psychiatry and Behavioral Neurology 1983; 25-40.
T026	Schatzberg, A. F., Elliott, G. R., Lerbinger, J. E., Marcel, B., and Duffy, F. H. Topographic Mapping in Depressed Patients. Topographic Mapping of Brain Electrical Activity 1986; 389-391.
T038	Jung KY. Dipole source localization in EEG. Journal of Korean Epilepsy Society 2002; 119-122.
T043	Llins R, Urbano FJ, Leznik E, Ramrez RR, and van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends in Neurosciences 2005; 28:325-333.
T064	Demos JN. Getting started with neurofeedback. New York: W.W. Norton; 2005.
T065	Kim BN, Shin SU, Kwon JS, Shin MS, Cho SC, and Hong KE. QEEG findings in attention deficit/hyperactivity disorder. Journal of Korean Neuropsychiatric Association 2000; 39, 208-218.
T068	Lubar JF, Swartwood MO, Swartwood JN, and Timmermann DL. Quantitative EEG and auditory event-related potentials in the evaluation of attention-deficit/hyperactivity disorder: effects of methylphenidate and implications for neurofeedback training. Journal of Psychoeducational Assessment 1995;143-160.
T075	Yoo J. The effectiveness of neurofeedback training on the inattention &impulsivity of ADHD children [dissertation]. Busan: Pusan National University; 2009.
T076	Roh O, Park T, Park S, and Son C. The Effects of Neurofeedback Training on Inattention and Hyperactivity/Impulsivity in Children with ADHD. Korean Journal of Clinical Psychology 2011; 30(2), 397-418.
T077	Kwon MS. Effects of neuro-feedback training including behaviour contract with ADHD (Attention Deficit Hyperactivity Disorder) [dissertation]. Seoul: Kyung Hee University; 2012.
T079	윤중수. 뇌파학 개론. 고려의학; 1999.
T080	정사준 옮김. 뇌파판독 STEP BY STEP(입문편) 제4판. 군자출판사; 2007.
T081	정사준 옮김. 뇌파판독 STEP BY STEP(증례편) 제4판. 군자출판사; 2007.
T082	양영철, 이양희. 뇌 맵핑 마인드. 말글빛냄; 2005.
T083	Caton, R. Electrical currents of the brain. Chicago Journal of Nervous & Mental Disease 1875; 2(4), 610.
T084	Berger, H. ber das Elektroenkephalogramm des Menschen. Archiv fr Psychiatrie und Nervenkrankheiten 1929; 87, 527-570.
T085	Birbaumer, N. et al. Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clinical Neurophysiology 2003; 114(3), 399-409.
T086	Walker JE, Kozlowski GP, and Lawson R. A Modular Activation/Coherence Approach to Evaluating Clinical/QEEG Correlations and for Guiding Neurofeedback Training: Modular Insufficiencies, Modular Excesses, Disconnections, and Hyperconnections. Journal of Neurotherapy 2007; 11(1), 25-44.
T089	D. T. Stuss, M. P. Alexander, and D. F. Benson. "Frontal lobe functions," in Contemporary Behavioral Neurology. Blue Books of Practical Neurology 1997; 169–187.
T095	Benham, G., Rasey, H. W., Lubar, J. F., Frederick, J. A., and Zoffuto, A. C. EEG Power-Spectral and Coherence Differences Between Attentional States during a Complex Auditory Task. Journal of Neurotherapy 1997; 2(3), 1-9.

[저작권]

Copyright © 2019 주식회사 아이메디신

이 분석결과지는 저작권법에 의해 보호받는 저작물입니다. 주식회사 아이메디신의 사전 서면 동의 없이 분석결과지의 일부 또는 전체를 복제, 공중 송신, 배포, 번역하 거나 전자 매체 또는 기계가 읽을 수 있는 형태로 바꿀 수 없으며, 무단 도용, 복제 및 사용 시에는 관계 법령에 의거하여 처벌 받을 수 있습니다.

[등록상표권]

아이메디신, iMediSync, iSyncBrain, iSyncHeart, iSyncBeat 로고는 주식회사 아이메디신의 등록상표입니다.